Issue
EPJ Nuclear Sci. Technol.
Volume 11, 2025
Special Issue on ‘Overview of recent advances in HPC simulation methods for nuclear applications’, edited by Andrea Zoia, Elie Saikali, Cheikh Diop and Cyrille de Saint Jean
Article Number 63
Number of page(s) 12
DOI https://doi.org/10.1051/epjn/2025052
Published online 08 October 2025
  1. A.J. Koning, D. Rochman, Towards sustainable nuclear energy: Putting nuclear data to work, Ann. Nucl. Energy 35, 2024 (2008) [CrossRef] [Google Scholar]
  2. A. Albà, et al., Lasso Monte Carlo, a variation on multi fidelity methods for high-dimensional uncertainty quantification, [arXiv:https://arxiv.org/abs/2210.03634] (2025) [Google Scholar]
  3. P. Ducru, Ph.D. thesis, Massachusetts Institute of Technology, 2021 [Google Scholar]
  4. G. Biot, et al., Evaluating Embedded Monte Carlo vs. Total Monte Carlo for nuclear data uncertainty quantification, EPJ Web Conf. 302, 07016 (2024) [Google Scholar]
  5. N.R. Adam, S.W. Klein, On coverage probability, independence and normality in batch means algorithms, Eur. J. Oper. Res. 43, 206 (1989) [Google Scholar]
  6. Student, The probable error of a mean, Biometrika 6, 1 (1908) [Google Scholar]
  7. E. Dumonteil, et al., Particle clustering in Monte Carlo criticality simulations, Ann. Nucl. Energy 63, 612 (2014) [CrossRef] [Google Scholar]
  8. J. Miao, B. Forget, K. Smith, Analysis of correlations and their impact on convergence rates in Monte Carlo eigenvalue simulations, Ann. Nucl. Energy 92, 81(2016) [Google Scholar]
  9. B.R. Herman, Ph.D. thesis, Massachusetts Institute of Technology, 2014 [Google Scholar]
  10. A.J. Koning, M.C. Duijvestijn, S. Hilaire, Talys-1.0, in International Conference on Nuclear Data for Science and Technology (EDP Sciences, Nice, France, Apr. 2007), pp. 211–214 [Google Scholar]
  11. D. Rochman, A.J. Koning, S.C. van der Marck, Uncertainty propagation for criticality safety benchmarks using random nuclear data libraries, Ann. Nucl. Energy 36, 810 (2009) [Google Scholar]
  12. D. Rochman, A.J. Koning, C.M. Sciolla, Perturbation and Monte Carlo methods for uncertainty propagation in reactor physics calculations, Ann. Nucl. Energy 38, 942 (2011) [Google Scholar]
  13. D. Rochman, et al., Efficient use of Monte Carlo simulations and nuclear data evaluations for uncertainty propagation, Nucl. Sci. Eng. 177, 337 (2014) [CrossRef] [Google Scholar]
  14. D. Rochman, et al., Uncertainty propagation with fast Monte Carlo techniques, Nucl. Data Sheets 118, 367 (2014) [Google Scholar]
  15. S.Y. Park, K. Anil, Multilevel Monte Carlo simulation for estimating multivariate options, J. Econom. 150, 219 (2009) [Google Scholar]
  16. P.K. Romano, et al., OpenMC: A state-of-the-art Monte Carlo code for research and development, Ann. Nucl. Energy 82, 90 (2015) [CrossRef] [Google Scholar]
  17. R. MacFarlane, A. Kahler, Methods for processing ENDF/B-VII with NJOY, Nucl. Data Sheets 111, 2739 (2010) [CrossRef] [Google Scholar]
  18. V. Sobes, et al., An analytic benchmark for Neutron Boltzmann transport with downscattering–Part I: Flux and eigenvalue solutions, Nucl. Sci. Eng. 195, 795 (2021) [Google Scholar]
  19. A.M. Lewis, et al., An analytic benchmark for Neutron Boltzmann transport with downscattering – Part IV: PFNS and Formula uncertainty propagation, Nucl. Sci. Eng. (2025, in preparation) [Google Scholar]
  20. D. Brown, et al., ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, in Nuclear Data Sheets 148. Special Issue on Nuclear Reaction Data (2018), pp. 1–142 [Google Scholar]
  21. D. Neudecker, Definitions for Testing Whether Evaluated Nuclear Data Relative Uncertainties are Realistic in Size, Tech. Rep. LA-UR-21-32171 (Los Alamos National Laboratory, 2021) [Google Scholar]
  22. R.E. Patterson, G.A. Newby, Criticality of uranium metal spheres, Nucl. Sci. Eng. 1, 112 (1956) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.