| Issue |
EPJ Nuclear Sci. Technol.
Volume 11, 2025
Special Issue on ‘Overview of recent advances in HPC simulation methods for nuclear applications’, edited by Andrea Zoia, Elie Saikali, Cheikh Diop and Cyrille de Saint Jean
|
|
|---|---|---|
| Article Number | 62 | |
| Number of page(s) | 16 | |
| DOI | https://doi.org/10.1051/epjn/2025053 | |
| Published online | 08 October 2025 | |
- I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (1991). https://doi.org/10.1201/9781351074834 [Google Scholar]
- J. Spanier, Two pairs of families of estimators for transport problems, SIAM J. Appl. Math. 14, 702 (1966) [Google Scholar]
- G.A. Bird, Direct simulation and the boltzmann equation, Phys. Fluids 13, 2677 (1970) [Google Scholar]
- J.A. Kulesza, T.R. Adams, J.C.E.A. Armstrong, MCNP® Code Version 6.3.0 Theory & User Manual, Tech. Rep. LA-UR-22-30006, Rev. 1 (Los Alamos National Laboratory, Los Alamos, NM, USA, Sept. 2022). https://doi.org/10.2172/1889957 [Google Scholar]
- S.N. Cramer, Application of the Fictitious Scattering Radiation Transport Model for Deep-Penetration Monte Carlo Calculations, Tech. rep. (Oak Ridge National Lab., TN (USA), 1977) [Google Scholar]
- H. Kahn, T. Harris, Estimation of particle transmission by random sampling, in National Bureau of Standards Applied Mathematics Series (1951), Vol. 12, pp. 27–30 [Google Scholar]
- F.H. Clark, The Exponential Transform as an Importance-Sampling Device. A REVIEW, Tech. rep. (1966). https://doi.org/10.2172/4547233 [Google Scholar]
- T.E. Booth, Genesis of the Weight Window and the Weight Window Generator in MCNP – A Personal History Los Alamos Report LA-UR-06-5807, Tech. rep. (2006). https://doi.org/10.13140/RG.2.1.1254.1608 [Google Scholar]
- E. Woodcock, Techniques Used in the GEM code for Monte Carlo Neutronics Calculations in Reactors and Other Systems of Complex Geometry, Tech. rep. (Argonne National Laboratory, 1965) [Google Scholar]
- J.F. Williamson, Monte Carlo evaluation of kerma at a point for photon transport problems: Monte Carlo calculation of kerma at a point, Med. Phys. 14, 567 (1987) [Google Scholar]
- E.M. Gelbard, L.A. Ondis, J. Spanier, A New Class of Monte Carlo Estimators, SIAM J. Appl. Math. 14, 697 (1966). https://doi.org/10.1137/0114058 [Google Scholar]
- T.E. Booth, K.C. Kelley, S.S. McCready, Monte Carlo Variance Reduction Using Nested Dxtran Spheres, Nucl. Technol. 168, 765 (2009). https://doi.org/10.13182/NT09-A9303 [Google Scholar]
- M.H. Kalos, On the Estimation of Flux at a Point by Monte Carlo, Nucl. Sci. Eng. 16, 111 (1963) [Google Scholar]
- J.P. Morgan, A. Mote, S.L.E.A. Pasmann, The Monte Carlo Computational Summit – October 25 & 26, 2023 – Notre Dame, Indiana, USA, J. Comput. Theor. Transp. 53, 361 (2024). https://doi.org/10.1080/23324309.2024.2354401 [Google Scholar]
- ORNL, Oak Ridge National Laboratory Frontier. https://www.olcf.ornl.gov/olcf-resources/compute-systems/frontier/ [Google Scholar]
- CEA/DAM, TERA, La saga des supercalculateurs (2021). [Google Scholar]
- F.B. Brown, W.R. Martin, Monte Carlo methods for radiation transport analysis on vector computers, Prog. Nucl. Energy 14, 269 (1984). https://doi.org/https://doi.org/10.1016/0149-1970(84)90024-6 [CrossRef] [Google Scholar]
- R.M. Bergmann, J. L. Vujić, Algorithmic choices in WARP – A framework for continuous energy Monte Carlo neutron transport in general 3D geometries on GPUs, Ann. Nucl. Energy 77, 176 (2015). https://doi.org/https://doi.org/10.1016/j.anucene.2014.10.039 [Google Scholar]
- B. Molnar, G. Tolnai, D. Legrady, A GPU-based direct Monte Carlo simulation of time dependence in nuclear reactors, Ann. Nucl. Energy 132, 46 (2019). https://doi.org/https://doi.org/10.1016/j.anucene.2019.03.024 [CrossRef] [Google Scholar]
- S.P. Hamilton, T.M. Evans, Continuous-energy Monte Carlo neutron transport on GPUs in the Shift code, Ann. Nucl. Energy 128, 236 (2019). https://doi.org/https://doi.org/10.1016/j.anucene.2019.01.012 [CrossRef] [Google Scholar]
- N. Choi, K.M. Kim, H.G. Joo, Optimization of neutron tracking algorithms for GPU-based continuous energy Monte Carlo calculation, Ann. Nucl. Energy 162, 108508 (2021). https://doi.org/https://doi.org/10.1016/j.anucene.2021.108508 [CrossRef] [Google Scholar]
- T. Chang, E. Brun, C. Calvin, Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype, in Parallel Processing and Applied Mathematics (Springer International Publishing, 2020), pp. 528–539 [Google Scholar]
- A. Klinvex et al., An asynchronous GPU-enabled cross-section lookup algorithm for Monte Carlo transport simulations, in Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2021) (2021) [Google Scholar]
- E. Brun et al., TRIPOLI-4®, CEA, EDF and AREVA reference Monte Carlo code, Ann. Nucl. Energy 82, 151 (2015). https://doi.org/https://doi.org/10.1016/j.anucene.2014.07.053 [CrossRef] [Google Scholar]
- F.-X. Hugot et al., Overview of the TRIPOLI-4 Monte Carlo code, version 12, EPJ Nucl. Sci. Technol. 10, 17 (2024). https://doi.org/10.1051/epjn/2024018 [CrossRef] [EDP Sciences] [Google Scholar]
- E. Guadagni, C. Le Loirec, Y. Pénéliau, A new hybrid next-event estimator for photon-based Monte Carlo dose rate calculations, Eur. Phys. J. Plus 136, 1135 (2021). https://doi.org/10.1140/epjp/s13360-021-02120-5 [Google Scholar]
- H. Hutinet, C. Le Loirec, D. Mancusi, Neutron elastic scattering kernel for Monte Carlo next-event estimators in TRIPOLI-4®, Eur. Phys. J. Plus 138, 189 (2023). https://doi.org/10.1140/epjp/s13360-023-03787-8 [Google Scholar]
- H. Hutinet, Développement d’un estimateur déterministe appliqué’ au transport de particules neutres en méthode Monte-Carlo, Ph.D. thesis, École Doctorale Physique et sciences de la matière (Marseille), 2024 [Google Scholar]
- F. Smekens et al., Simulation of dose deposition in stereotactic synchrotron radiation therapy: A fast approach combining Monte Carlo and deterministic algorithms, Phys. Med. Biol. 54, 4671 (2009) [Google Scholar]
- J. Sweezy, Photon Next-Event Estimator Implementation in MCATK, Tech. Rep. LA-UR-16-28780 (Los Alamos National Lab, 2016) [Google Scholar]
- L. Jahnke et al., GMC: A GPU implementation of a Monte Carlo dose calculation based on Geant4, Phys. Med. Biol. 57, 1217 (2012) [Google Scholar]
- J. Sweezy, A Monte Carlo Volumetric-Ray-Casting Estimator for Global Fluence Tallies on GPUs, J. Comput. Phys. 372, 426 (2018) [Google Scholar]
- NVIDIA, P. Vingelmann, F.H.P. Fitzek, CUDA, release: 10.2.89 (2020) [Google Scholar]
- D. Brusa et al., Fast sampling algorithm for the simulation of photon Compton scattering, Nucl. Instrum. Methods Phys. Res. 379, 167 (1996) [Google Scholar]
- A. Zoia et al., Doppler broadening of neutron elastic scattering kernel in TRIPOLI-4®, Ann. Nucl. Energy 54, 218 (2013) [CrossRef] [Google Scholar]
- B. Welford, Note on a method for calculating corrected sums of squares and products, Technometrics 4, 419 (1962) [CrossRef] [Google Scholar]
- M. Lei et al., Analysis of Dogleg Duct Experiments with 14-MeV Neutron Source using TRIPOLI-4 Monte Carlo Transport Code, IEEE Trans. Plasma Sci. 46, 1180 (2018) [Google Scholar]
- S.G. Parker et al., Optix: A general purpose ray tracing engine, ACM Trans. Graph. 29, 1 (2010) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
