Issue
EPJ Nuclear Sci. Technol.
Volume 9, 2023
Templates of Expected Measurement Uncertainties: a CSEWG Effort
Article Number 32
Number of page(s) 12
DOI https://doi.org/10.1051/epjn/2023013
Published online 09 November 2023
  1. R. Capote, Y.-J. Chen, F.-J. Hambsch et al., Prompt fission neutron spectra of actinides, Nucl. Data Sheets 131, 1 (2016). [CrossRef] [Google Scholar]
  2. W. Mannhart, Evaluation of the Cf-252 Fission Neutron Spectrum between 0 MeV and 20 MeV, IAEA Report IAEA-TECDOC-410, 158 (1987) . [Google Scholar]
  3. W. Mannhart, Status of the Cf-252 Fission Neutron Spectrum Evaluation with Regard to Recent Experiments, IAEA Report INDC(NDS)-220, 305 (1989) [Google Scholar]
  4. A.D. Carlson, V.G. Pronyaev, R. Capote et al., Evaluation of the neutron data standards, Nucl. Data Sheets 148, 143 (2018) [CrossRef] [Google Scholar]
  5. A. Trkov, M. Herman, D.A. Brown, ENDF-6 Formats Manual, Brookhaven National Laboratory Report BNL-90365-2009 Rev.2 (2012) [Google Scholar]
  6. A. Chalupka, L. Malek, S. Tagesen et al., Results of a low-background measurement of the fission neutron spectrum from 252Cf in the 9- to 29-MeV energy range, Nucl. Sci. Eng. 106, 367 (1990) [CrossRef] [Google Scholar]
  7. D. Neudecker, T.N. Taddeucci, R.C. Haight et al., The need for precise and well-documented experimental data on prompt fission neutron spectra from neutron-induced fission of 239Pu, Nucl. Data Sheets 131, 289 (2016) [CrossRef] [Google Scholar]
  8. D. Neudecker, P. Talou, T. Kawano et al., Evaluations of Energy Spectra of Neutrons Emitted Promptly in Neutron-induced Fission of 235U and 239Pu, Nucl. Data Sheets 148, 293 (2018) [CrossRef] [Google Scholar]
  9. T.N. Taddeucci, R.C. Haight, H.Y. Lee et al., multiple-scattering corrections to measurements of the prompt fission neutron spectrum, Nucl. Data Sheets 123, 135 (2015) [CrossRef] [Google Scholar]
  10. G.S. Boikov, V.D. Dmitriev, G.A. Kudyaev et al., Spectrum of neutrons accompanying fission of #Th, #U, and #U by 2.9-MeV and 14.7-MeV neutrons (below and above the threshold of emission fission), Sov. J. Nucl. Phys. 53, 392 (1991) EXFOR-No. 41110.009 [Google Scholar]
  11. A.A. Boytsov, A.F. Semenov, B.I. Starostov, Relative measurements of 233U+nth, 235U+nth and 239Pu+nth prompt fission neutron spectra (PFNS) in the energy range 0.01–5 MeV, IAEA Report INDC(CCP)-0459 (2014); translation into English from: in Proceedings of the All-Union Conf. on Neutron Physics, Kiev, USSR (1983) Vol. 2, pp. 294–297, EXFOR-No. 40873.006 for 239Pu and 40873.004 for 235U [Google Scholar]
  12. A. Chatillon, G. Bélier, T. Granier et al., Measurement of prompt neutron spectra from the 239Pu(n, f) fission reaction for incident neutron energies from 1 to 200 MeV, Phys. Rev. C 89, 014611 (2014) EXFOR-No. 14379. [CrossRef] [Google Scholar]
  13. M. Devlin, J.A. Gomez, K.J. Kelly et al., The prompt fission neutron spectrum of 235U(n, f) below 2.5 MeV for incident neutrons from 0.7 to 20 MeV, Nucl. Data Sheets 148, 322 (2018) [CrossRef] [Google Scholar]
  14. M.M. Islam, H.-H. Knitter, The energy spectrum of prompt neutrons from the fission of uranium-235 by 0.40-MeV neutrons, Nucl. Sci. Eng. 50, 108 (1973) EXFOR-No. 20385.003 [CrossRef] [Google Scholar]
  15. P.I. Johansson, B. Holmqvist, An experimental study of the prompt fission neutron spectrum induced by 0.5-MeV neutrons incident on uranium-235, Nucl. Sci. Eng. 62, 695 (1977) EXFOR-No. 20175.003 [CrossRef] [Google Scholar]
  16. H.-H. Knitter, M.M. Islam, M. Coppola, Investigation of fast neutron interaction with #U, Z. Phy. 257, 108 (1972) EXFOR-No. 20394.008 [CrossRef] [Google Scholar]
  17. H.-H. Knitter, Measurement of the energy spectrum of prompt neutrons from the fission of Pu239 by 0.215 MeV Neutrons, Atomkernenerg. 26, 76 (1975) EXFOR-No. 20576.003 [Google Scholar]
  18. N. Kornilov, F.-J. Hambsch, I. Fabry et al., The 235U(n, f) prompt fission neutron spectrum at 100K input neutron energy, Nucl. Sci. Eng. 165, 117 (2010) EXFOR-No. 31692.006 [CrossRef] [Google Scholar]
  19. A. Lajtai, J. Kecskeméti, J. Sáfár et al., Energy spectrum measurements of neutrons for energies 30 kev–4 Mev from thermal fission of main fuel elements, in Proceedings of the Conf. on Nuclear Data for Basic and Applied Sciences, Santa Fe, USA, 1985, Vol. 1, pp. 613–616 (1985), EXFOR-No. 30704.004 [Google Scholar]
  20. J.P. Lestone, E.F. Shores, Uranium and plutonium average prompt-fission neutron energy spectra (PFNS) from the analysis of NTS NUEX Data, Nucl. Data Sheets 119, 213 (2014) [CrossRef] [Google Scholar]
  21. J.P. Lestone, E.F. Shores, Uranium and plutonium prompt-fission-neutron spectra (PFNS) of NTS NUEX data and the corresponding uncertainty budget, Los Alamos National Laboratory Report LA-UR-14-24087, 2014 [Google Scholar]
  22. V.N. Nefedov, B.I. Starostov, A.A. Boytsov, Precision Measurements of 252Cf, 233U, 235U and 239Pu Prompt Fission Neutron Spectra (PFNS) in the Energy Range 0.04–5 MeV, IAEA Report INDC(CCP)-0457 (2014); translation into English from: in Proc. of the All-Union Conf. on Neutron Physics, Kiev, USSR, 2, 285 (1983) [Google Scholar]
  23. B.I. Starostov, V.N. Nefedov, A.A. Boytsov, Precision Measurements of 252Cf, 233U+nth, 235U+th and 239Pu+nth Prompt Fission Neutron Spectra (PFNS) in the Energy Range 2–11 MeV; IAEA Report INDC(CCP)-0458 (2014); translation into English from: in Proc. of the All-Union Conf. on Neutron Physics, Kiev, USSR, 2, 290 (1983). [Google Scholar]
  24. B.I. Starostov, V.N. Nefedov and A.A. Boytsov, Prompt neutrons spectra from the thermal neutron fission of 233U, 235U, 239Pu and spontaneous fission of 252Cf in the secondary neutron energy range 0.01–12 MeV, IAEA Report INDC(CCP)-293/L, 19–32 (1989), translation into English from: Nucl. Constants, 3, 16 (1985), EXFOR-No. 40930.008 [Google Scholar]
  25. A.S. Vorobyev, O.A. Shcherbakov, Integral Prompt Neutron Spectrum for Fission of 235U by Thermal Neutrons, IAEA Report INDC(CCP)-0455, 21–41 (2014), EXFOR-No. 41597.002 [Google Scholar]
  26. V.Ya. Baryba, N.V. Kornilov, O.A. Sal’nikov, IPPE Report 947 (1979) (in Russian), available in INIS, EXFOR 40740 [Google Scholar]
  27. B.V. Zhuravlev, L.E. Kazakov, V.J. Kononov et al., Investigations of the interactions of neutrons with 238U nuclei, IAEA Report INDC(CCP)-154/L (1980) [Google Scholar]
  28. M. Baba, H. Wakabayashi, M. Ishikawa et al., Fission Spectrum Measurement of 232Th and 238U for 2 MeV Neutrons, in IAEA Consult. Meet. on Physics of Neutron Emission in Fission, Mito, Japan, IAEA Report INDC(NDS)-220, 1989, pp. 149–159EXFOR 22112. [Google Scholar]
  29. G.S. Boykov, V.D. Dmitriev, G.A. Kudyaev et al., Spectrum of neutrons accompanying fission of 232Th, 235U, and 238U by 2.9-MeV and 14.7-MeV neutrons (below and above the threshold of emission fission), Yad. Fiz. 53, 628 (1991) [Google Scholar]
  30. G.S. Boykov, V.D. Dmitriev, G.A. Kudyaev et al., New data on prefission neutrons, Z. Phys. A 340, 79 (1991) [Google Scholar]
  31. G.S. Boykov, V.D. Dmitriev, G.A. Kudyaev et al., Neutron spectrum in the fission of Th-232, U-235, and U-238 by neutrons with energies 2.9 and 14.7 MeV, Phys. Atomic Nucl. 57, 572 (1994) [Google Scholar]
  32. G.N. Smirenkin, G.N. Lovchikova, A.M. Trufanov et al., Measurement of energy spectrum of neutrons accompanying emission fission of U-238 nuclei, Yad. Fiz. 59, 1934 (1996); original: Phys. At. Nuclei 59, 1865 (1996), EXFOR 41461. [Google Scholar]
  33. A.M. Trufanov, G.N. Lovchikova, M.I. Svirin et al., Investigation of the spectra of neutrons originating from #U fission induced by 5.0- and 13.2-MeV neutrons, Yad. Fiz. 64, 3 (2001); original: Phys. At. Nuclei 64, 1 (2001), EXFOR 41450 [Google Scholar]
  34. G.N. Lovchikova, A.M. Trufanov, M.I. Svirin et al., Spectra and mean energies of prompt neutrons from #U fission induced by primary neutrons of energy in the region # MeV, Yad. Fiz. 67, 1270 (2004); original: Phys. At. Nuclei 67, 1246 (2004), EXFOR 41447 [Google Scholar]
  35. Experimental Nuclear Reaction Data Library (EXFOR), IAEA Nuclear Data Section. See https://www-nds.iaea.org/exfor (accessed on 8/11/2016), or for the NNDC at Brookhaven National Laboratory, the mirror site is http://www.nndc.bnl.gov/exfor (accessed on 8/11/2016) [Google Scholar]
  36. N. Otuka, E. Dupont, V. Semkova et al., Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): International collaboration between nuclear reaction data centres (NRDC), Nucl. Data Sheets 120, 272 (2014) [CrossRef] [Google Scholar]
  37. V.V. Zerkin, B. Pritychenko, The experimental nuclear reaction data (EXFOR): Extended computer database and web retrieval system, Nucl. Instrum. Meth. Phys. Res. Sec. A 888, 31–43 (2018) [CrossRef] [Google Scholar]
  38. J.M. O’Donnell, A new method to reduce the statistical and systematic uncertainty of chance coincidence backgrounds measured with waveform digitizers, Nucl. Instr. Methods in Phys. Res. A 805, 87 (2016) [CrossRef] [Google Scholar]
  39. K.J. Kelly, T. Kawano, J.M. O’Donnell et al., Preequilibrium asymmetries in the 239Pu(n,f) prompt fission neutron spectrum, Phys. Rev. Lett. 122, 072503 (2019). [CrossRef] [PubMed] [Google Scholar]
  40. K.J. Kelly, M. Devlin, J.M. O’Donnell et al., Measurement of the 239Pu(n, f) prompt fission neutron spectrum from 10 keV to 10 MeV induced by 1–20 MeV neutrons, Phys. Rev. C 102, 034615 (2020) [CrossRef] [Google Scholar]
  41. K.J. Kelly, J.A. Gomez, M. Devlin et al., Measurement of the 235U(n, f) prompt fission neutron spectrum from 10 keV to 10 MeV induced by neutrons of energy from 1 MeV to 20 MeV, Phys. Rev. C 105, 044615 (2020). [Google Scholar]
  42. J.A. Gomez, J.M. O’Donnell, K.J. Kelly et al., Quantification of the systematic uncertainties associated with measuring a chance coincidence background at Chi-Nu, Los Alamos National Laboratory Report LA-UR-19-20145, 2019 [Google Scholar]
  43. K.J. Kelly, M. Devlin, J.M. O’Donnell et al., Errors introduced in fission neutron spectrum measurements using single reference, Nucl. Instrum. Meth. Phys. Res. A 1010, 165552 (2021) [CrossRef] [Google Scholar]
  44. B. Böttger, H. Klein, A. Chalupka et al., Investigation of the spectral fluence of neutrons from spontaneous fission of 252Cf by means of time-of-flight spectrometry, Nucl. Sci. Eng. 106, 377 (1990) [CrossRef] [Google Scholar]
  45. H. Märten, D. Richter, D. Seeliger, Analysis of experimental data on the high-energy end of the 252Cf spontaneous-fission neutron spectrum, IAEA Report INDC(GDR)-28L, 1984 [Google Scholar]
  46. H. Märten, D. Richter, D. Seeliger et al., The 252Cf neutron spectrum in the 5- to 20-MeV energy range, Nucl. Sci. Eng. 106, 353 (1990) [CrossRef] [Google Scholar]
  47. P. Staples, J.J. Egan, G.H.R. Kegel et al., Prompt fission neutron energy spectra induced by fast neutrons, Nucl. Phys. A591, 41 (1995) EXFOR 13982 [CrossRef] [Google Scholar]
  48. P. Marini, J. Taieb, B. Laurent et al., Prompt Fission Neutrons in the 239Pu(n, f) Reaction, Phys. Rev. C 101, 044614 (2020). [CrossRef] [Google Scholar]
  49. D. Neudecker, ARIADNE—A Program estimating covariances in detail for neutron experiments, EPJ Nuclear Sci. Technol. 4, 34 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  50. D. Neudecker, A.D. Carlson, S. Croft et al., Templates of expected measurement uncertainties for average prompt and total fission neutron multiplicities, EPJ Nuclear Sci. Technol. 9, 30 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  51. J.K. Dickens, SCINFUL: A Monte carlo based computer program to determine a scintillator full energy response to neutron detection for # between 0.1 and 80 MeV: User’s Manual and FORTRAN Program Listing, Oak Ridge National Laboratory Report ORNL-6462 (1988). Available online at http://web.ornl.gov/info/reports/1988/3445605995426.pdf. RSIC package number PSR-267A, last updated in 1989 [Google Scholar]
  52. K.J. Kelly, J.M. O’Donnell, J.A. Gomez et al., Numerical integration of detector response functions via monte carlo simulations, Nucl. Instr. Methods Phys. Res. A 866, 182 (2017) [CrossRef] [Google Scholar]
  53. A. Trkov, R. Capote, Evaluation of the prompt fission neutron spectrum of thermal neutron-induced fission of 235U, Phys. Procedia 64, 48 (2015) [CrossRef] [Google Scholar]
  54. P. Talou, T. Kawano, D.G. Madland et al., Uncertainty quantification of prompt fission neutron spectrum for n(0.5 MeV)+239Pu, Nucl. Sci. Eng. 166, 254 (2010) [CrossRef] [Google Scholar]
  55. M.E. Rising, P. Talou, T. Kawano et al., Evaluation and uncertainty quantification of prompt fission neutron spectra of U and Pu Isotopes, Nucl. Sci. Eng. 175, 81 (2013) [CrossRef] [Google Scholar]
  56. F.-J. Hambsch, A. Tudora, G. Vladuca et al., Prompt fission neutron spectrum evaluation for #Cf(SF) in the frame of the multi-modal fission model, Ann. Nucl. Energy 32, 1032 (2005) [CrossRef] [Google Scholar]
  57. OECD NEA Data BankJEFF-3.2 Evaluated Data Library—Neutron Data (2014), http://www.oecd-nea.org/dbforms/data/eva/evatapes/jeff_32/ (accessed on 8/11/2016) [Google Scholar]
  58. K. Shibata, O. Iwamoto, T. Nakagawa et al., JENDL-4.0: A new library for nuclear science and engineering, J. Nucl. Sci. Technol. 48, 1 (2011) [CrossRef] [Google Scholar]
  59. D.G. Madland, J.R. Nix, New calculation of prompt fission neutron spectra and average prompt neutron multiplicities, Nucl. Sci. Eng. 81, 213 (1982) [CrossRef] [Google Scholar]
  60. D.A. Brown, M.B. Chadwick, R. Capote et al., ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, New standards and thermal scattering data, Nucl. Data Sheets 148, 1 (2018) [CrossRef] [Google Scholar]
  61. M.B. Chadwick, M. Herman, O. Oblŏzinský et al., ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112, 2887 (2011) [CrossRef] [Google Scholar]
  62. M.B. Chadwick, P. Oblŏzinský, M. Herman et al., ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology, Nucl. Data Sheets 107, 2931 (2006) [CrossRef] [Google Scholar]
  63. B. Becker, P. Talou, T. Kawano et al., Monte Carlo hauser-feshbach predictions of prompt fission γ rays: Application to nth + 235U, nth + 239Pu, and 252Cf (sf), Phys. Rev. C 87 014617 (2013) [CrossRef] [Google Scholar]
  64. O. Litaize, O. Serot, Investigation of phenomenological models for the monte carlo simulation of the prompt fission neutron and γ emission, Phys. Rev. C 82, 054616 (2010) [CrossRef] [Google Scholar]
  65. R. Vogt, J. Randrup, J. Pruet et al., Event-by-event study of prompt neutrons from 239Pu(n, f), Phys. Rev. C 80, 044611 (2009). [CrossRef] [Google Scholar]
  66. H.Y. Lee, T.N. Taddeucci, R.C. Haight et al., Li-glass detector response study with a 252Cf Source for low-energy prompt fission neutrons, Nucl. Instr. Methods Phys. Res. A 703, 213 (2013) [CrossRef] [Google Scholar]
  67. G. Knoll, Radiation Detection and Measurement. 3rd Edition, John Wiley and Sons Inc. (2000) [Google Scholar]
  68. B.H. Armitage, M.G. Sowerby, in Proc. of EURATOM Specialist Meeting on Inelastic scattering and Fission Neutron Spectra, AERE, Harwell, UK, AERE Report AERE-R-8636 (1977). See Appendix A with detailed corrections for past data sets. [Google Scholar]
  69. R.B. Leachman, L. Blumberg, Fragment anisotropies in neutron-, deuteron-, and alpha-particle-induced fission, Phys. Rev. 137, B814 (1965) [CrossRef] [Google Scholar]
  70. V.G. Nesterov, Yu.A. Blyumkina, L.A. Kamaeva et al., Angular distribution of fragments from fission of 235U and 239Pu by 0.08–1.25 MeV neutrons, Atomnaya Energiya 16, 519 (1964) [Google Scholar]
  71. J.E. Simmons, R.L. Henkel, Angular distribution of fragments in fission induced by MeV neutrons, Phys. Rev. 120, 198 (1960) [CrossRef] [Google Scholar]
  72. K.J. Kelly, J.A. Gomez, J.M. O’Donnell et al., Utilization of MCNP6 Implicit-capture simulations for quantification of systematic uncertainties from experimental environments, Nucl. Instr. Methods Phys. Res. A 954, 161411 (2020). [CrossRef] [Google Scholar]
  73. C.J. Werner, MCNP Users Manual – Code Version 6.2, Los Alamos National Laboratory Report LA-UR-17-29981, 2017 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.