EPJ Nuclear Sci. Technol.
Volume 9, 2023
Templates of Expected Measurement Uncertainties: a CSEWG Effort
Article Number 31
Number of page(s) 17
Published online 09 November 2023
  1. D. Neudecker et al., Templates of expected measurement uncertainties, EPJ Nuclear Sci. Technol. 9, 35 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  2. D. Neudecker et al., Templates of expected measurement uncertainties for prompt fission neutron spectra, EPJ Nuclear Sci. Technol. 9, 32 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  3. A.M. Lewis et al., Templates of expected measurement uncertainties for Neutron-Induced Capture and Charged-Particle Production Cross Section Observables, EPJ Nuclear Sci. Technol. 9, 33 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  4. R.C. Block et al., in Neutron Cross Section Measurements (Handbook of Nuclear Engineering Springer Verlag, 2010), Vol. 1, pp. 1–81. [Google Scholar]
  5. A.D. Carlson et al., Evaluation of the neutron data standards, Nucl. Data Sheets 148, 143 (2018), [Google Scholar]
  6. P.W. Lisowski et al., Los Alamos National Laboratory spallation neutron sources, Nucl. Sci. Eng. 106, 208 (1990), [CrossRef] [Google Scholar]
  7. L.A. Bernstein et al., 239Pu(n, 2n)238Pu cross section deduced using a combination of experiment and theory, Phys. Rev. C 65, 021601(R) (2002), [CrossRef] [Google Scholar]
  8. L.A. Bernstein et al., Studying the role of nuclear structure effects in neutron-induced reactions using GEANIE at LANSCE, Nucl. Phys. A 682, 404c (2001), [CrossRef] [Google Scholar]
  9. G.P.A. Nobre, in Impact of Experimentally Constrained Level Densities on (n, n’γ), WINS2018 Workshop on Inelastic Neutron Scattering, Predeal, Romania, 19–21 Sept 2018 [Google Scholar]
  10. D. Rochman et al., Neutron-induced reaction studies at FIGARO using a spallation source, Nucl. Instrum. Meth. Phys. Res. Sec. A 523, 102 (2004), [CrossRef] [Google Scholar]
  11. N. Fotiades et al., α and 2p2n emission in fast neutron-induced reactions on 60Ni, Phys. Rev. C 91, 064614 (2015), [CrossRef] [Google Scholar]
  12. R.O. Nelson, Cross section measurements at LANSCE for defense, science and applications, EPJ Web Conf. 93, 06002 (2015), [CrossRef] [EDP Sciences] [Google Scholar]
  13. K.H. Guber et al., New neutron cross-section measurements at ORELA and their application in nuclear criticality calculations, Nucl. Instrum. Meth. Phys. Res. Sec. B 241, 218 (2005). [CrossRef] [Google Scholar]
  14. H. Derrien et al., Average Neutron Total Cross Sections in the Unresolved Energy Range from ORELA High-resolution Transmission Measurements, Oak Ridge National Laboratory Report ORNL/TM-2003/291, 2004. [Google Scholar]
  15. A. Negret et al., Cross-section measurements for the 56Fe(n, xnγ) reactions, Phys. Rev. C 90, 034602 (2014), [CrossRef] [Google Scholar]
  16. C. Rouki et al., High resolution measurement of neutron inelastic scattering cross-sections for 23Na, Nucl. Instrum. Meth. Phys. Res. Sec. A 672, 82 (2012), [CrossRef] [Google Scholar]
  17. D. Ene et al., Global characterisation of the GELINA facility for high-resolution neutron time-of-flight measurements by Monte Carlo simulations, Nucl. Instrum. Meth. Phys. Res. Sec. A 618, 54 (2010) , [CrossRef] [Google Scholar]
  18. W. Mondelaers, P. Schillebeeckx, GELINA: A neutron time-of-flight facility for high-resolution neutron data measurements, Notiziario Neutroni eLuce di Sincrotrone 11, 19 (2006), [Google Scholar]
  19. A. Plompen, A. Negret, Uncertainties and Covariances for Inelastic Scattering Data–A Status Report, JRC Scientific and Technical Reports EUR 25208 EN (2011), [Google Scholar]
  20. A. Daskalakis et al., Assessment of beryllium and molybdenum nuclear data files with the RPI neutron scattering system in the energy region from 0.5 to 20 MeV, EPJ Web Conf. 146, 11037 (2017), [CrossRef] [EDP Sciences] [Google Scholar]
  21. R. Beyer et al., Inelastic scattering of fast neutrons from excited states in 56Fe, Nucl. Phys. A 927, 41 (2014), [CrossRef] [Google Scholar]
  22. R. Beyer et al., Characterization of the neutron beam at nELBE, Nucl. Instrum. Meth. Phys. Res. Sec. A 723, 151 (2013), [CrossRef] [Google Scholar]
  23. E. Pirovano et al., Cross section and neutron angular distribution measurements of neutron scattering on natural iron, Phys. Rev. C 99, 024601 (2019), [CrossRef] [Google Scholar]
  24. A.R. Junghans et al., Fast-neutron induced reactions at the nELBE time-of-flight facility, Nucl. Data Sheets 119, 349 (2014), [CrossRef] [Google Scholar]
  25. A.R. Junghans et al., The nELBE neutron time-of-flight facility, in 2008 IEEE Nuclear Science Symposium Conference Record N42–3, 2008, pp. 2909–2911. [Google Scholar]
  26. M. Drosg, DROSG-2000v12.01: Neutron Source Reactions. Data Files with Three Computer Codes for 60 Accelerator-Based Two-body Neutron Source Reactions, IAEA Report IAEA-NDS-87 Rev. 10 (Feb. 2017), 2003, [Google Scholar]
  27. S.M. El-Kadi et al., Elastic and inelastic scattering of neutrons from 54,56Fe and 63,65Cu. (I). Measurements from 8 to 14 MeV and a spherical optical model analysis, Nucl. Phys. A 390, 509 (1982), [CrossRef] [Google Scholar]
  28. H.H. Hogue et al., Elastic and inelastic scattering of 7- to 14-MeV neutrons from lithium-6 and lithium-7, Nucl. Sci. Eng. 69, 22 (1979), [CrossRef] [Google Scholar]
  29. H.H. Hogue et al., Differential elastic and inelastic scattering of 7- to 15-MeV neutrons from beryllium, Nucl. Sci. Eng. 68, 38 (1978), [CrossRef] [Google Scholar]
  30. J.P. Delaroche et al., Elastic and inelastic scattering of neutrons from 54,56Fe and 63,65Cu. (II). Scattering and nuclear structure effects from coupled channels calculations, Nucl. Phys. A 390, 541 (1982), [CrossRef] [Google Scholar]
  31. S.G. Glendinning et al., Elastic and inelastic neutron cross sections for boron-10 and boron-11, Nucl. Sci. Eng. 80, 256 (1982), [CrossRef] [Google Scholar]
  32. S.G. Glendinning et al., Neutron elastic scattering cross sections for 16O between 9 and 15 MeV, Nucl. Sci. Eng. 82, 393 (1982), [CrossRef] [Google Scholar]
  33. S. Mellema, R.W. Finlay, F.S. Dietrich, Neutron inelastic scattering from 54,56Fe, Phys. Rev. C 33, 481 (1986), [CrossRef] [Google Scholar]
  34. R.W. Finlay et al., The Ohio University beam swinger facility, Nucl. Instrum. Meth. Phys. Res. 198, 197 (1982), [CrossRef] [Google Scholar]
  35. D.R. Donati et al., Cross sections, angular distributions, and magnetic substate populations in the 23Na(n, n’γ) reaction, Phys. Rev. C 16, 939 (1977), [CrossRef] [Google Scholar]
  36. J.R. Vanhoy et al., 54Fe neutron elastic and inelastic scattering differential cross sections from 2–6 MeV, Nucl. Phys. A 972, 107, (2018) [CrossRef] [Google Scholar]
  37. A.P.D. Ramirez et al., Neutron scattering cross section measurements for 56Fe, Phys. Rev. C 95, 064605 (2017), [CrossRef] [Google Scholar]
  38. J.R. Vanhoy et al., Neutron scattering differential cross sections for 23Na from 1.5 to 4.5 MeV, Nucl. Phys. A 939, 121 (2015), [CrossRef] [Google Scholar]
  39. J.R. Vanhoy et al., Inspection of 56Fe γ-Ray angular distributions as a function of incident neutron energy using optical model approaches, EPJ Web of Conf. 146, 11051 (2017), [CrossRef] [EDP Sciences] [Google Scholar]
  40. M. Kerveno et al., Measurement of 238U(n, n’γ) cross section data and their impact on reaction models, Phys. Rev. C 104, 044605 (2021), [CrossRef] [Google Scholar]
  41. M.J. Rapp et al., Beryllium and graphite neutron total cross-section measurements from 0.4 to 20 MeV, Nucl. Sci. Eng. 172, 268 (2012), [CrossRef] [Google Scholar]
  42. S.J. Daugherty et al., Neutron inelastic scattering measurements on 136Xe at En = 0.7 to 100 MeV, Phys. Rev. C 98, 064606 (2018), [CrossRef] [Google Scholar]
  43. S.M. El-Kadi et al., Elastic and inelastic scattering of neutrons from 54,56Fe and 63,65Cu. (II). Scattering and nuclear structure effects from coupled channels calculations, Nucl. Phys. A 390, 541 (1982), [CrossRef] [Google Scholar]
  44. A.O. Hanson, J.L. McKibben, A neutron detector having uniform sensitivity from 10 keV to 3 MeV, Phys. Rev. 72, 673 (1947), [CrossRef] [Google Scholar]
  45. R.A. Nobles et al., Response of the long counter, Rev. Sci. Instrum. 25, 334 (1954), [CrossRef] [Google Scholar]
  46. N.J. Roberts et al., Comparison of long counter measurements of monoenergetic and radionuclide source-based neutron fluence, Rad. Meas. 45, 1151 (2010), [CrossRef] [Google Scholar]
  47. H. Tagziria, D.J. Thomas, Calibration and Monte Carlo modelling of neutron long counters, Nucl. Instrum. Meth. Phys. Res. Sec. A 452, 470 (2000), [CrossRef] [Google Scholar]
  48. H. Klein, F.D. Brooks, Scintillation detectors for fast neutrons, in Proc. of Science, International Workshop on Fast Neutron Detectors and Applications (University of Cape Town, South Africa, 2006), [Google Scholar]
  49. H.-J. Kellermann, R. Langkau, Neutron detection efficiency of the liquid scintillator NE214 in the MeV range, Nucl. Instrum. Meth. 94, 137 (1971), [CrossRef] [Google Scholar]
  50. M. Drosg, Accurate measurement of the counting efficiency of a NE-213 neutron detector between 2 and 26 MeV, Nucl. Instrum. Meth. 105, 573 (1972), [CrossRef] [Google Scholar]
  51. K. Nakayama, E. Farrelly Pessoa, R.A. Douglas, A modified version of the Monte Carlo computer code for calculating neutron detection efficiencies, Nucl. Instrum. Meth. Phys. Res. 190, 555 (1981), [CrossRef] [Google Scholar]
  52. J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53, 270 (2006), [Google Scholar]
  53. J. Allison et al., Recent developments in Geant4, Nucl. Instrum. Meth. Phys. Res. Sec. A 835, 186 (2016), [CrossRef] [Google Scholar]
  54. J.K. Dickens, SCINFUL: A Monte Carlo Based Computer Program to Determine a Scintillator Full Energy Response to Neutron Detection for En Between 0.1 and 80 MeV: User’s Manual and FORTRAN Program Listing, (1988), [Google Scholar]
  55. S.A. Pozzi, E. Padovani, M. Marseguerra, MCNP-PoliMi: A Monte-Carlo code for correlation measurements, Nucl. Instrum. Meth. Phys. Res. Sec. A 513, 550 (2003), [CrossRef] [Google Scholar]
  56. S.A. Pozzi et al., Monte Carlo and analytical models of neutron detection with organic scintillation detectors, Nucl. Instrum. Meth. Phys. Res. Sec. A 582, 629 (2007), [CrossRef] [Google Scholar]
  57. E. Padovani et al., MCNPX-PoliMi User’s Manual, Oak Ridge National Laboratory Report, 2012. [Google Scholar]
  58. T.N. Massey et al., A measurement of the 27Al(d, n) spectrum for use in neutron detector calibration, Nucl. Sci. Eng. 129, 175 (1998), [CrossRef] [Google Scholar]
  59. S. Agostinelli et al., Geant4–A simulation toolkit, Nucl. Instrum. Meth. Phys. Res. Sec. A 506, 250 (2003), [CrossRef] [Google Scholar]
  60. W. Mannhart, in Evaluation of the Cf-252 Fission Neutron Spectrum between 0 MeV and 20 MeV, IAEA Report IAEA-TECDOC-410, 1987, pp. 158–171 [Google Scholar]
  61. W. Mannhart, in Status of the Cf-252 Fission Neutron Spectrum Evaluation with Regard to Recent Experiments, IAEA Report INDC(NDS)-220, 1989, pp. 305–336. [Google Scholar]
  62. E. Blain et al., Measurement of prompt fission neutron spectrum for spontaneous fission of 252Cf using γ multiplicity tagging, Phys. Rev. C 95, 064615 (2017), [CrossRef] [Google Scholar]
  63. N.V. Kornilov, Verification of the 252Cf standard in the energy range 2–20 MeV, IAEA Report INDC(USA)-108, 2015 [Google Scholar]
  64. J.W. Meadows, 252Cf fission neutron spectrum from 0.003 to 15.0 MeV, Phys. Rev. 157, 1076 (1967), [CrossRef] [Google Scholar]
  65. K. Gul, A.A. Naqvi, H.A. Al-Juwair, Relative neutron detector efficiency and response function measurements with a 252Cf neutron source, Nucl. Instrum. Meth. Phys. Res. Sec. A 278, 470 (1989), [CrossRef] [Google Scholar]
  66. H. Marten, D. Seeliger, Analysis of the prompt-neutron spectrum from spontaneous fission of 252Cf, J. Phys. G: Nucl. Phys. 10, 349 (1984), [CrossRef] [Google Scholar]
  67. M. Herman et al., Evaluation of neutron reactions on iron isotopes for CIELO and ENDF/B-VIII.0, Nucl. Data Sheets 148, 214 (2018), [CrossRef] [Google Scholar]
  68. J. Blok, C.C. Jonker, A method for the computation of plural and multiple scattering corrections, Physica 18, 809 (1952), [CrossRef] [Google Scholar]
  69. C.A. Engelbrecht, Multiple scattering correction for inelastic scattering from cylindrical targets, Nucl. Instrum. Meth. 80, 187 (1970), [CrossRef] [Google Scholar]
  70. C.A. Engelbrecht, Recipes for multiple scattering corrections, Nucl. Instrum. Meth. 93, 103 (1971), [CrossRef] [Google Scholar]
  71. W.E. Kinney, Finite-sample corrections to neutron scattering data, Nucl. Instrum. Meth. 83, 15 (1970), [CrossRef] [Google Scholar]
  72. D.L. Smith, Sample-size Effects in Fast-Neutron Gamma-Ray Production Measurements: Solid Cylinder Samples, Argonne National Laboratory Report ANL/NDM-17, 1975. [Google Scholar]
  73. M. Salama, O.H. Sallam, K. Naguib, On the Validity of Cranberg’s Analytical Method for Calculation of the Attenuation and Multiple Scattering Corrections, J. Phys. D: Appl. Phys. 16, 937 (1983). [CrossRef] [Google Scholar]
  74. D.E. Velkey et al., Sample-size effects in neutron scattering studied with analytic and Monte Carlo methods, Nucl. Instrum. Meth. 129, 231 (1975), [CrossRef] [Google Scholar]
  75. J.R. Lilley, MULCAT-BRC, A Monte Carlo Neutron and Gamma-Ray Multiple Scattering Correction Program, Internal Service de Physique et Techniques Nucleaire, Centre d’Etudes de Bruyeres-le-Chatel Report P2N/934/80, 1980 [Google Scholar]
  76. G.F. Auchampaugh, S. Plattard, N.W. Hill, Neutron total cross-section measurements of 9Be, 10,11B, and 12,13C from 1.0 to 14 MeV using the 9Be(d,n)10B reaction as a “white” neutron source, Nucl. Sci. Eng. 69, 30 (1979), [CrossRef] [Google Scholar]
  77. M. Drosg, The 1H(7Li, n)7Be Reaction as a Neutron Source in the MeV Range, Los Alamos National Laboratory Report LA-8842-MS, 1981 [Google Scholar]
  78. M. Drosg, D.M. Drake, J. Mazarik, Calibration of a Li-glass detector for neutron energies above 50 keV by the 1H(t, n)3He reaction, Nucl. Instrum. Meth. Phys. Res. Sec. B 94, 319 (1994), [CrossRef] [Google Scholar]
  79. M. Drosg, R.C. Haight, D.M. Drake, Double-differential Gamma-ray Production: Cross Sections and Spectra of Al, Si and Fe for 8.51, 10.00, 12.24 and 14.24 MeV Neutrons, Los Alamos National Laboratory Report LA-UR-02-0016, 2002. [Google Scholar]
  80. M. Drosg, Novel monoenergetic neutron sources for energies between 2.5 and 25.7 MeV, Nucl. Instrum. Meth. Phys. Res. Sec. A 254, 466 (1987), [CrossRef] [Google Scholar]
  81. M. Drosg, N. Otuka, Evaluation of the Absolute Angle-Dependent Differential Neutron Production Cross Sections by the Reactions 3H(p, n)3He, 1H(t, n)3He, 2H(d, n)3He, 3H(d, n)4He, and 2H(t, n)4He and of the Cross Sections of Their Time-Reversed Counterparts up to 30 MeV and Beyond, IAEA INDC(AUS)-0019, 2015 [Google Scholar]
  82. L. Bernstein et al., Final Report for the Workshop for Applied Nuclear Data Activities, Lawrence Livermore National Laboratory Report LLNL-PROC-769849, 2019. [Google Scholar]
  83. A.B. Smith et al., Multi-angle fast neutron time-of-flight system, Nucl. Phys. 50, 277 (1967), [Google Scholar]
  84. M. Lebois et al. Development of a kinematically focused neutron source with the p(7Li, n)7Be inverse reaction, Nucl. Instrum. Meth. Phys. Res. Sec. A 735, 145 (2014), [CrossRef] [Google Scholar]
  85. J. Wilson, M. Lebois, L. Qi, Neutron-rich isotopes from 238U(n, f) and 232Th(n, f) studied with the ν-ball spectrometer coupled to the LICORNE neutron source, EPJ Web of Conf. 193, 04010 (2018), [CrossRef] [EDP Sciences] [Google Scholar]
  86. R. Woods, J.L. McKibben, R.L. Henkel, The Los Alamos three-stage Van de Graaff facility, Nucl. Instrum. Meth. 122, 81 (1974), [CrossRef] [Google Scholar]
  87. D.W. Kneff et al., Helium production cross sections for 15-MeV neutrons on 6Li and 7Li, Nucl. Sci. Eng. 94, 136 (1986), [CrossRef] [Google Scholar]
  88. M. Drosg et al., Double differential neutron emission cross sections of 10B and 11B at 6, 10 and 14 MeV and of 6Li, 7Li and 12C at 14 MeV, Radiat. Eff. 92, 145 (1986), [CrossRef] [Google Scholar]
  89. S. Chiba et al., The 1H(11B, n)11C reaction as a practical low-background monoenergetic neutron source in the 10 MeV region, Nucl. Instrum. Meth. Phys. Res. Sec. A 281, 581 (1989), [CrossRef] [Google Scholar]
  90. D.W. Glasgow et al., Differential elastic and inelastic scattering of 9- to 15-MeV neutron from carbon, Nucl. Sci. Eng. 61, 521 (1976), [CrossRef] [Google Scholar]
  91. A.M. Daskalakis et al., Quasi-differential elastic and inelastic neutron scattering from iron in the MeV energy range, Ann. Nucl. Energy 110, 603 (2017), [CrossRef] [Google Scholar]
  92. A.M. Daskalakis et al., Quasi-differential neutron scattering from 238U from 0.5 to 20 MeV, Ann. Nucl. Energy 73, 455 (2014), [CrossRef] [Google Scholar]
  93. D.P. Barry et al., Quasi-differential neutron scattering in zirconium from 0.5 to 20 MeV, Nucl. Sci. Eng. 174, 188 (2013)),; Numerical values from EXFOR [CrossRef] [Google Scholar]
  94. J.E. Lynn, Helios: The new Harwell electron linear accelerator, and its scientific programme, Contemp. Phys. 21, 483 (1980), [CrossRef] [Google Scholar]
  95. M.S. Coates et al., A new linear accelerator at A.E.R.E Harwell, in Proc. of the Fourth National Soviet Conference on Neutron Physics, Kiev, U.S.S.R (1977), Vol. 4, pp. 139–157 [Google Scholar]
  96. E. Pirovano, Neutron Scattering Cross Section Measurements with a New Scintillator Array, Ph.D Thesis, Ghent University INDC-BLG-0002, 2017, [Google Scholar]
  97. K.P. Harrig et al., Neutron spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique, Nucl. Instrum. Meth. Phys. Res. A 877, 359 (2018), [CrossRef] [Google Scholar]
  98. K.J. Kelly et al., The neutron scattering cross section and angular distribution measurement program at LANL, EPJ Web Conf. 284, 01004 (2023), [CrossRef] [EDP Sciences] [Google Scholar]
  99. D. Neudecker et al., Applying a template of expected uncertainties to updating 239Pu(n, f) cross-section covariances in the neutron data standards database, Nucl. Data Sheets 163, 228 (2020), [CrossRef] [Google Scholar]
  100. I. Murata et al., Measurement of the angle-correlated neutron spectrum for the 9Be(n, 2n) reaction with a pencil-beam DT neutron source, in Proc. Intern. Conf. Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, edited by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray, (EDP Sciences), pp. 999–1002, [Google Scholar]
  101. F.J. Saglime et al., A system for differential neutron scattering experiments in the energy range from 0.5 to 20 MeV, Nucl. Instrum. Meth. Phys. Res. A 620, 401 (2010), [CrossRef] [Google Scholar]
  102. A.R. Junghans et al., Fast neutron measurements at the nELBE time-of-flight facility, EPJ Web of Conf. 93, 02015 (2015), [CrossRef] [EDP Sciences] [Google Scholar]
  103. K.J. Kelly, M. Devlin, J.M. O’Donnell, E.A. Bennett, Correlated nγ angular distributions from the Q=4.4398 MeV 12C(n, n’γ) reaction for incident neutron energies from 6.5 MeV to 16.5 MeV, Phys. Rev. C 104, 064614 (2021), [CrossRef] [Google Scholar]
  104. K.J. Kelly, M. Devlin, J.M. O’Donnell, E.A. Bennett, M. Paris, P.A. Copp, Measurement of the cross section of the Q = 4.4398 MeV 12C(n, n’γ) reaction from threshold to 16.5 MeV using γ and correlated nγ detection, Phys. Rev C 108, 014603 (2023), [CrossRef] [Google Scholar]
  105. T. Kibédi et al., Evaluation of theoretical conversion coefficients using BrIcc, Nucl. Instrum. Meth. Phys. Res. Sec. A 589, 202 (2008) [CrossRef] [Google Scholar]
  106. Update of X ray and γ ray Decay Data Standards for Detector Calibration and Other Applications: Recommended Decay Data, High Energy Gamma Ray Standards and Angular Correlation Coefficients, INDC(NDS)-437 Distr. NG+G, (International Atomic Energy Agency, Vienna, 2007) [Google Scholar]
  107. T. Otuka et al., Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data Centres (NRDC), Nucl. Data Sheets 120, 272 (2014), [CrossRef] [Google Scholar]
  108. O. Schwerer et al., EXFOR Formats Description for Users (EXFOR Basics), IAEA-NDS-206, June 2008 [Google Scholar]
  109. O. Schwerer et al., EXFOR Formats Description for Users (EXFOR Basics), IAEA Nuclear Data Section, Vienna, Austria, June 2007–2023, and [Google Scholar]
  110. A.M. Lewis et al., Templates of expected measurement Uncertainties for total cross section observables, EPJ Nuclear Sci. Technol. 9, 34 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  111. A.J. Koning, S. Hilaire, M.C. Duijvestijn, TALYS-1.0, in Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, Nice, France, 2007, edited by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, S. Leray, (EDP Sciences, 2008), pp. 211–214. [Google Scholar]
  112. M. Herman et al., EMPIRE: nuclear reaction model code system for data evaluation, Nucl. Data Sheets 108, 2655 (2007), [CrossRef] [Google Scholar]
  113. R.L. Walter, Analyzing power measurements for neutron-nucleus scattering and the spin-orbit potential, AIP Conf. Proc. 124, 53 (1985), [CrossRef] [Google Scholar]
  114. A.J. Koning, J.P. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV, Nucl. Phys. A 713, 231 (2003), [NASA ADS] [CrossRef] [Google Scholar]
  115. R. Capote et al., A global dispersive coupled-channel optical model potential for actinides, J. Nucl. Sci. Technol. 45, 333 (2008), [CrossRef] [Google Scholar]
  116. P. Leconte, D. Bernard, Validation of the U-238 inelastic scattering neutron cross section through the EXCALIBUR dedicated experiment, EPJ Web of Conf. 146, 06017 (2017), [CrossRef] [EDP Sciences] [Google Scholar]
  117. R. Capote et al., Elastic and inelastic scattering of neutrons on 238U nucleus, EPJ Web of Conf. 69, 00008 (2014), [CrossRef] [EDP Sciences] [Google Scholar]
  118. A. Ichihara, S. Kunieda, K. Shibata, Calculation of neutron cross sections on 93Nb for JENDL-4, J. Nucl. Sci Tech. 45, 793 (2008), [CrossRef] [Google Scholar]
  119. V. Avrigeanu, M. Avrigeanu, Consistent accessment of neutron-induced activation of 93Nb, Front. Phys. 11, 1142436 (2023), [CrossRef] [Google Scholar]
  120. J.L. Kammerdiener, Neutron Spectra Emitted by 239Pu, 235U, 238U, Fe, Nb, Ni, Al, and C Irradiated by 14 MeV Neutrons. PhD thesis, Lawrence Livermore Laboratory Report UCRL-51232, 1972 [Google Scholar]
  121. P.W. Lisowski, M. Drosg, D.M. Drake, B. Hoop, Cross sections for neutron production from 6- and 10-MeV neutrons incident on 10B and 11B, Nucl. Sci. Eng. 195, 1131 (2021), [CrossRef] [Google Scholar]
  122. G. Vedrenne, D. Blanc, F. Cambou, Interaction des neutrons de 14,1 MeV avec le deutérium, J. Phys. France 24, 801 (1963), [CrossRef] [EDP Sciences] [Google Scholar]
  123. Y.-L. Zhang et al., Measurement of secondary neutron emission double-differential cross section for 9Be induced by 8.19 MeV neutrons, Nucl. Phys. Rev. 28, 366 (2011), [Google Scholar]
  124. R. Han et al., Fast neutron scattering on Gallium target at 14.8 MeV, Nucl. Phys. A 936, 17 (2015) , [CrossRef] [Google Scholar]
  125. Y. Zhang et al., Measurement of differential and double-differential neutron emission cross-sections for 9Be at 21.94 MeV neutrons, Eur. Phys. J. A 53, 236 (2017), [CrossRef] [Google Scholar]
  126. A. Donzella et al., A proton recoil telescope for neutron spectroscopy, Nucl. Instrum. Meth. Phys. Res. Sec. A 613, 58 (2010), [CrossRef] [Google Scholar]
  127. J.J. Griffin et al., Statistical model of intermediate structure, Phys. Rev. Lett. 17, 478 (1966); Phys. Rev. Lett. 19, 57 (1967), [CrossRef] [Google Scholar]
  128. C.M. Perey et al., 58Ni + n Transmission, capture, and differential elastic scattering data analysis in the resonance region, Radiat. Eff. 96, 297 (1986), [CrossRef] [Google Scholar]
  129. M.E. Rose, The analysis of angular correlation and angular distribution data, Phys. Rev. 91, 610 (1953), [CrossRef] [Google Scholar]
  130. R.M. Steffen, H. Frauenfelder, The influence of extranuclear fields on angular correlations, in Perturbed Angular Correlations Part 1, edited by E. Karlsson (1964), pp. 13–21 [Google Scholar]
  131. W.G. Winn, D.G. Sarantites, Directional-correlation attenuation factors for Ge(LI) γ-ray detectors, Nucl. Instrum. Meth. 66, 61 (1968), [CrossRef] [Google Scholar]
  132. C.J. Werner, MCNP Users Manual – Code Version 6.2, Los Alamos National Laboratory Report LA-UR-17-29981, 2017. [Google Scholar]
  133. M. Devlin et al., The prompt fission neutron spectrum of 235U(n, f) below 2.5 MeV for incident neutrons from 0.7 to 20 MeV, Nucl. Data Sheets 148, 322 (2018), [CrossRef] [Google Scholar]
  134. D. Neudecker, B. Hejnal, F. Torvesson, M.C. White, D.L. Smith, D. Vaughan, R. Capote, Template for estimating uncertainties of measured neutron-induced fission cross-sections, EPJ Nuclear Sci. Technol. 4, 21 (2018), [CrossRef] [EDP Sciences] [Google Scholar]
  135. D. Neudecker, ARIADNE–A program estimating covariances in detail for neutron experiments, EPJ Nuclear Sci. Technol. 4, 34 (2018) [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.