EPJ Nuclear Sci. Technol.
Volume 9, 2023
Templates of Expected Measurement Uncertainties: a CSEWG Effort
Article Number 30
Number of page(s) 16
Published online 09 November 2023
  1. J.W. Boldeman, Review of ν̅ for 252Cf and thermal neutron fission, in Proc. of Neutron Standards and Applications Sympos., Gaithersburg, USA, (1977) pp. 182–192 [Google Scholar]
  2. R.R. Spencer, R. Gwin, R. Ingle, A measurement of the average number of prompt neutrons from spontaneous fission of Californium-252, Nucl. Sc. Eng. 80, 603 (1982) [CrossRef] [Google Scholar]
  3. E.J. Axton, A.G. Bardell, Neutron yield from the spontaneous fission of Cf-252(nu), Metrologia 21, 59 (1985) [CrossRef] [Google Scholar]
  4. D.W. Colvin, M.G. Sowerby, Boron Pile Nu-bar Measurements, in Proc. of IAEA Phys. Chem. Fission Conf., Salzburg, Austria (1965), Vol. 2, p. 25 [Google Scholar]
  5. B.M. Aleksandrov, E.V. Korolev, Ya.M. Kramaro et al., Absolute Measurements of NU(Cf-252) by Means of Manganese Bath Method, in Proc. of All Union Conf. on Neutron Phys., Kiev, USSR, (1980), Vol. 4, p. 119. [Google Scholar]
  6. J.R. Smith, S.D. Reeder, R.J. Gehrke, Absolute measurement of Nu-bar for Cf-252, Electric Power Res. Inst., Nucl. Phys. Ser. 3436, 1 (1984) [Google Scholar]
  7. A. DeVolpi, K.G. Porges, Neutron yield of 252Cf based on absolute measurement of the neutron rate and fission rate, Phys. Rev. C 1, 683 (1970) [CrossRef] [Google Scholar]
  8. Z. Huan-Qiao, L. Zu-Huz, The measurement of the average number of prompt neutrons and the distribution of prompt neutron numbers for Cf-252 spontaneous fission, Chin. J. Nucl. Phys. 1, 9 (1979) [Google Scholar]
  9. H. Bozorgmanesh, G.F. Knoll, Absolute measurement of the number of neutrons per spontaneous fission of 252Cf, Trans. Amer. Nucl. Soc. 27, 864 (1977) [Google Scholar]
  10. A.D. Carlson et al., Evaluation of the neutron data standards, Nucl. Data Sheets 148, 143 (2018) [Google Scholar]
  11. E.J. Axton, Evaluation of the Thermal Constants of 233U, 235U, 239Pu and 241Pu, and the Fission Neutron Yield of 252Cf, Central Bureau for Nuclear Measurements (Geel) Report GE/PH/01/86, 1986 [Google Scholar]
  12. J.W. Boldeman, M.G. Hines, Prompt neutron emission probabilities following spontaneous and thermal neutron fission, Nucl. Sci. Eng. 91, 114 (1985) [CrossRef] [Google Scholar]
  13. J.W. Boldeman, R.L. Walsh, The energy dependence of ν̅ for neutron induced fission of 235U below 2.0 MeV, J. Nucl Energy 24, 191 (1970) [CrossRef] [Google Scholar]
  14. B.C. Diven, H.C. Martin, R.F. Taschek, Multiplicities of fission neutrons, Phys. Rev. 101, 1012 (1956) [CrossRef] [Google Scholar]
  15. J.C. Hopkins, B.C. Diven, Prompt neutrons from fission, Nucl. Phys. 48, 433 (1963) [CrossRef] [Google Scholar]
  16. D.S. Mather, P. Fieldhouse, A. Moat, Measurement of prompt ν̅tot for the neutron-induced fission of Th233, U233, U234, U238 and Pu239, Nucl. Phys. A 66, 149 (1965) [CrossRef] [Google Scholar]
  17. L.I. Prokhorova et al., Yield of prompt neutrons ν̅tot in the fission of U235 by neutrons with energies up to 1.5 MeV, Atomnaya Énergiya 30, 250 (1971) [Google Scholar]
  18. K.E. Bolodin et al., Average number of prompt neutrons in Pu239 fission, Atomnaya Énergiya 33, 901 (1972) [Google Scholar]
  19. M. Soleihac, J. Frehaut, J. Gauriau, Energy dependence of ν̅p for neutron-induced fission of 235U, 238U and 239Pu from 1.3 to 15 MeV, J. Nucl Energy 23, 257 (1969) [CrossRef] [Google Scholar]
  20. J. Frehaut, G. Mosinski, M. Soleihac, Recent Results in ν̅p Measurements between 1.5 and 15 MeV, in The Average Number of Neutrons Emitted in Fission, France, Report EANDC(E)-15 “U” (1973) [Google Scholar]
  21. R. Gwin, R.R. Spencer, R.W. Ingle, Measurements of the energy dependence of prompt neutron emission from 233U, 235U, and 239Pu for En =0.0005 to 10 MeV relative to emission from spontaneous fission of 252Cf, Nucl. Sci. Eng. 94, 365 (1986) [CrossRef] [Google Scholar]
  22. R. Gwin, R.R. Spencer, R.W. Ingle, Measurements of the energy dependence of prompt neutron neutron emission from 233U, 235U, 239Pu, and 241Pu for En =0.0005 to 10 eV relative to emission from spontaneous fission of 252Cf, Nucl. Sci. Eng. 87, 381 (1984) [CrossRef] [Google Scholar]
  23. R. Gwin et al., Measurements of the Average Number of Prompt Neutrons Emitted per Fission of 239Pu and 235U ((Oak Ridge National Laboratory ORNL/TM-6246, 1978) [Google Scholar]
  24. M. Soleihac et al., Average number of prompt neutrons and relative fission cross-sections of U-235 and Pu-239 in the 0.3 to 1.4 MeV range, in Proc. of the Conference for Nuclear Data for Reactors, Helsinki, Sweden (1970), Vol. 2, pp. 145–156 [Google Scholar]
  25. J.W. Boldeman, J. Fréhaut, R.L. Walsh, A reconciliation of measurements of ν̅p for neutron-induced fission of Uranium-235, Nucl. Sci. Eng. 63, 430 (1977) [CrossRef] [Google Scholar]
  26. M.V. Savin et al., The Average Number of Prompt Neutrons in Fast Neutron Induced Fission of U-235, Pu-239 and Pu-240, International Atomic Energy Agency Report IAEA-CN-26/40, 1970. [Google Scholar]
  27. I. Asplund-Nilsson, H. Conde, N. Starfelt, An Absolute Measurement of Nu-bar of Cf-252, Nucl. Sc. Eng. 16, 124 (1963) [CrossRef] [Google Scholar]
  28. B.C. Diven, J.C. Hopkins, Numbers of prompt neutrons per fission for U233, U235, Pu239 and Cf252, in Proc. of Reactor Physics Sem., Vienna, Austria(1961), Vol. 1, p. 149 [Google Scholar]
  29. G. Edwards, D.J.S. Findlay, E.W. Lees, Measurements of prompt nu-bar and variance for the spontaneous fission of Cf-252 and Pu-242, Ann. Nucl. Energy 9, 127 (1982) [CrossRef] [Google Scholar]
  30. P.H. White, E.J. Axton, Measurement of the number of neutrons per fission for Cf-252, J. Nucl. Energy 22, 73 (1968) [CrossRef] [Google Scholar]
  31. Experimental Nuclear Reaction Data Library (EXFOR), IAEA Nuclear Data Section. See (accessed on 2016-8-11), or for the NNDC at Brookhaven National Laboratory, the mirror site is (accessed on 2016-8-11) [Google Scholar]
  32. N. Otuka et al., Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC), Nucl. Data Sheets 120, 272 (2014) [CrossRef] [Google Scholar]
  33. V.V. Zerkin, B. Pritychenko, The experimental nuclear reaction data (EXFOR): extended computer database and web retrieval system, Nucl. Instrum. Meth. Phys. Res. Sec. A 888, 31 (2018) [CrossRef] [Google Scholar]
  34. H. Condé, J. Hansén, M. Holmberg, Prompt ν̅tot in Neutron-induced Fission of 239Pu and 241Pu, J. Nucl. Energy 22, 53 (1968) [CrossRef] [Google Scholar]
  35. Z. Huanqiao et al., The dependence of average numbers of prompt fission neutron of Pu-239 on incident fast neutron energies, Chin. J. Nucl. Phys. 2, 29 (1980) [Google Scholar]
  36. B. Nurpeisov et al., Dependence of ν̅tot on neutron energies up to 5 MeV for 233U, U235, and 239Pu, Atomnaya Énergiya 39, 199 (1975) [Google Scholar]
  37. G.N. Smirenkin et al., Mean number of prompt neutrons in the fission of U233, U235, Pu239 by 4 and 15 MeV neutrons, Sov. At. Energy 4, 253 (1958) [CrossRef] [Google Scholar]
  38. R.L. Walsh, J.W. Boldeman, The energy dependence of ν̅p for 233U, 235U and 239Pu below 5.0 MeV, J. Nucl. Energy 25, 321 (1971) [CrossRef] [Google Scholar]
  39. I. Johnstone, A Measurement of the Average Number of Prompt Neutrons Emitted in Fission at High Energy, Atomic Energy Research Establishment Report A.E.R.E NP/R 1912, 1956 [Google Scholar]
  40. V.I. Kalashnikova, et al., Absolute evaluation of the average number of neutrons emitted in the fission of some isotopes of uranium and plutonium, in Proc. of the USSR Conf. peaceful Uses of Atomic Energy, USSR (1955), Vol. 1955, p. 156 [Google Scholar]
  41. M.V. Savin et al., Energy dependence of ν̅tot in the fission of U235 by fast neutrons, Sov. J. Nucl. Phys. 16, 638 (1973) [Google Scholar]
  42. P.J. Leroy, Nombres moyens de neutrons prompts Èmis dans La fission de 238U, 239Pu, 232Th, Le Journal de Physique et le Radium 21, 617 (1960) [CrossRef] [EDP Sciences] [Google Scholar]
  43. E. Fort, J. Freehaut, H. Tellier, P. Long, Evaluation of ν̅p for 239Pu: impact for applications of the fluctuations at low energy, Nucl. Sci. Eng. 99, 375 (1988) [CrossRef] [Google Scholar]
  44. J.E. Lynn, P. Talou, O. Bouland, Reexamining the role of the (n,γf) process in the low-energy fission of 235U and 239Pu, Phys. Rev. C 97, 064601 (2018) [CrossRef] [Google Scholar]
  45. E.J. Axton, Accuracies and correction in the neutron bath techniques, Proc. of Neutron Standards and Applications Sympos., Gaithersburg, USA (1977), pp. 237–243 [Google Scholar]
  46. S. Croft, A. Favalli, R.D. McElroy, Jr., A review of the prompt neutron Nu-bar value for 252Cf spontaneous fission, Nucl. Instrum. Meth. Phys. Res. A 954, 161605 (2020) [CrossRef] [Google Scholar]
  47. N.J. Roberts, MCNP Calculations of Correction Factors for Radionuclide Neutron Source Emission Rate Measurements using the Manganese Bath , National Physical Laboratory Report ISSN 1369-6793, 2001 [Google Scholar]
  48. S. Croft, A. Favalli, How the choice of data reduction can strongly influence uncertainty assessment: a Re-analysis of Mn-bath experiments, Rad. Meas. 47, 481 (2012) [CrossRef] [Google Scholar]
  49. C. De Saint Jean(co-ordinator), R.D. McKnight (Monitor), Co-ordinated Evaluation of Plutonium-239 in the Resonance Region Nuclear Energy Agency WPEC report NEA/NSC/WPEC/DOC(2014)447, 2014 [Google Scholar]
  50. M. Divadeenam, J.R. Stehn, A least-squares evaluation of thermal data for fissile nuclei, Ann. Nucl. Energy 11, 375 (1984) [CrossRef] [Google Scholar]
  51. J. Taieb, T. Granier, T. Ethvignot, Measurement of the average energy and multiplicity of prompt-fission neutrons from 238U(n, f) and 237Np(n, f) from 1 to 200 MeV, in Proceedings of International Conference on Nuclear Data for Science and Technology, Nice, France (2008), Vol. 114, pp. 429–432, [Google Scholar]
  52. V.N. Nefedov, B.I. Starostov, A.A. Boytsov, Precision Measurements of 252Cf, 233U, 235U and 239Pu Prompt Fission Neutron Spectra (PFNS) in the Energy Range 0.04–5 MeV, IAEA Report INDC(CCP)-0457, 2014; translation into English from: in Proc. of the All-Union Conf. on Neutron Physics, Kiev, USSR (1983), Vol. 2, pp. 285–289, EXFOR-No. 40871.009 for 239Pu and 40871.007 for 235U [Google Scholar]
  53. R. Capote et al., Prompt fission neutron spectra of actinides, Nucl. Data Sheets 131, 1 (2016) [CrossRef] [Google Scholar]
  54. P. Marini et al., Energy dependence of prompt fissions neutron multiplicity in the 239Pu(n, f) reaction, Phys. Lett. B 835, 137513 (2022). [CrossRef] [Google Scholar]
  55. D. Neudecker et al., Templates of expected measurement uncertainties for prompt fission neutron spectra, EPJ Nuclear Sci. Technol. 9, 32 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  56. J.W. Boldeman, J. Fréhaut, The foil thickness correction in ν̅tot measurements and the ν̅η discrepancy, Nucl. Sci. Eng. 76, 49 (1980) [CrossRef] [Google Scholar]
  57. D.A. Brown et al., ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148, 1 (2018) [CrossRef] [Google Scholar]
  58. C. Wagemans, The Nuclear Fission Process (CRC Press Boca Raton, 1991) [Google Scholar]
  59. D.L. Duke et al., Fission-fragment properties in 238U(n,f) between 1 and 30 MeV, Phys. Rev. C 94, 054604 (2016) [CrossRef] [Google Scholar]
  60. A. Tudora, Systematic behaviour of the average parameters required for the los alamos model of prompt neutron emission, Ann. Nucl. Energy 36, 72 (2009) [CrossRef] [Google Scholar]
  61. J. Bess, editor, International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP), Organization for Economic Co-operation and Development-Nuclear Energy Agency Report NEA/NSC/DOC(95)03, 2019. [Google Scholar]
  62. D. Neudecker, ARIADNE–A program estimating covariances in detail for neutron experiments, EPJ Nuclear Sci. Technol. 4, 34 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  63. R.E. Sund, R.B. Walton, Gamma rays from short-lived fission-fragment isomers, Phys. Rev. 146, 824 (1966) [CrossRef] [Google Scholar]
  64. J.W. Boldeman, A.W. Dalton, Prompt Nubar Measurements for Thermal Neutron Fission, Australian Atomic Energy Commission Report AAEC/E172, 1967 [Google Scholar]
  65. D.W. Colvin, The numbers of neutrons per fission, ν̅, from thermal to 15 MeV, in Proc. of the Conference for Nuclear Data for Reactors, Helsinki, Sweden (1970), Vol. 2, pp. 195–213 [Google Scholar]
  66. D.S. Mather, P. Fieldhouse, A. Moat, Average number of prompt neutrons from U235 fission induced by neutrons from thermal to 8 MeV, Phys. Rev. 133, B1403 (1964) [CrossRef] [Google Scholar]
  67. N.J. Roberts, L.N. Jones, Investigation of the Implications of 250Cf and 248Cm in 252Cf neutron sources, National Physical Laboratory Report, 2004 [Google Scholar]
  68. D. Neudecker et al., Evaluations of energy spectra of neutrons emitted promptly in neutron-induced fission of 235U and 239Pu, Nucl. Data Sheets 148, 293 (2018) [CrossRef] [Google Scholar]
  69. M. Devlin et al., The prompt fission neutron spectrum of 235U(n, f) below 2.5 MeV for incident neutrons from 0.7 to 20 MeV, Nucl. Data Sheets 148, 322 (2018) [CrossRef] [Google Scholar]
  70. K.J. Kelly et al., Measurement of the 239Pu(n, f) prompt fission neutron spectrum from 10 keV to 10 MeV induced by 1–20 MeV neutrons, Phys. Rev. C 102, 034615 (2020) [CrossRef] [Google Scholar]
  71. P. Marini et al., Prompt fission neutrons in the 239Pu(n, f) reaction, Phys. Rev. C 101, 044614 (2020) [CrossRef] [Google Scholar]
  72. A.E. Lovell et al., Correlations between fission fragments and neutron anisotropies in neutron-induced fission, Phys. Rev. C 102, 024621 (2020) [CrossRef] [Google Scholar]
  73. S. Halfon, New evaluation of correction factors for high precision neutron measurements using NIST manganese bath, J. Res. Nat. Inst. Stand. Technol. manuscript in preparation (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.