Issue
EPJ Nuclear Sci. Technol.
Volume 9, 2023
Templates of Expected Measurement Uncertainties: a CSEWG Effort
Article Number 33
Number of page(s) 25
DOI https://doi.org/10.1051/epjn/2023015
Published online 09 November 2023
  1. H. Farrar, et al., Helium production cross section of boron for fast reactor neutron spectra, Nucl. Technol. 25, 305 (1975) [CrossRef] [Google Scholar]
  2. Y. Danon, et al., Simultaneous measurement of 235U fission and capture cross sections from 0.01 eV to 3 keV using a gamma multiplicity detector, Nucl. Sci. Eng. 187, 291 (2017) [CrossRef] [Google Scholar]
  3. M. Heil, et al., A neutron source to measure stellar neutron capture cross sections at kT = 5 keV, Nucl. Phys. A 758, 529 (2005) [CrossRef] [Google Scholar]
  4. C. Lederer-Woods, et al., Destruction of the cosmic γ-ray emitter 26Al in massive stars: Study of the key 26Al(n, p) reaction, Phys. Rev. C 104, l022803 (2021) [CrossRef] [Google Scholar]
  5. A. Wallner, et al., AMS–A powerful tool for probing nucleosynthesis via long-lived radionuclides, Eur. Phys. J. A 27, 337 (2006) [CrossRef] [Google Scholar]
  6. Z. Rvay, et al., Cold neutron PGAA facility at Budapest, Nucl. Instrum. Meth. B 213, 385 (2004) [CrossRef] [Google Scholar]
  7. E.A. Mackey, et al., New thermal neutron prompt γ-ray activation analysis instrument at the National Institute of Standards and Technology Center for Neutron Research, Nucl. Instrum. Meth. B 226, 426 (2004) [CrossRef] [Google Scholar]
  8. D. Neudecker, et al., Templates of expected measurement uncertainties, EPJ Nuclear Sci. Technol. 9, 35 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  9. D. Neudecker, et al., Applying a Template of Expected Uncertainties to Updating 239Pu(n, f) Cross-section Covariances in the Neutron Data Standards Database, Nucl. Data Sheets 163, 228 (2020) [CrossRef] [Google Scholar]
  10. A.M. Lewis, Uncertainty Analysis Procedures for Neutron-Induced Cross Section Measurements and Evaluations, Ph.D. thesis, University of California, Berkeley, Department of Nuclear Engineering, 2020 [Google Scholar]
  11. A.D. Carlson, et al., Fluctuations in neutron total cross sections, Phys. Rev. 158, 1142 (1967) [CrossRef] [Google Scholar]
  12. R. Policroniades, et al., An associated particle time-of-flight facility for neutron cross section measurement, Nucl. Instrum. Meth. A 346, 230 (1994) [CrossRef] [Google Scholar]
  13. E.M. Hafner, et al., The Total n-p Scattering Cross Section at 4.75 Mev, Phys. Rev. 89, 204 (1953) [CrossRef] [Google Scholar]
  14. A. Bratenahl, et al., Neutron total cross sections in the 7- to 14-Mev region, Phys. Rev. 110, 927 (1958) [CrossRef] [Google Scholar]
  15. D.B. Fossan, et al., Neutron total cross sections of Be, B10, B, C, and O, Phys. Rev. 123, 209 (1961) [CrossRef] [Google Scholar]
  16. G.D. Kim, et al., Production of monoenergetic MeV-range neutrons by 3H(p, n)3He reaction, J. Radioanal Nucl. Chem. 271, 541 (2007) [CrossRef] [Google Scholar]
  17. I. Slypen, et al., Light charged particle emission induced by fast neutrons with energies between 25 and 65 MeV on iron, J. Phys. G 30, 45 (2004) [CrossRef] [Google Scholar]
  18. K. Wisshak, et al., The Karlsruhe 4π barium fluoride detector, Nucl. Instrum. Meth. A 299, 60 (1990) [CrossRef] [Google Scholar]
  19. D.G. Schuster, Production of collimated monoenergetic beams of neutrons from 2 MeV to 14 MeV by the associated particle method, Nucl. Instrum. Meth. 76, 35 (1969) [CrossRef] [Google Scholar]
  20. H. Vonach, et al., Przisionsmessung des 27Al(n, α)-Wirkungsquerschnitts fr 14,43 MeV-Neutronen, Z. Phys. 237, 155 (1970) [CrossRef] [Google Scholar]
  21. C. Guerrero, et al., Performance of the neutron time-of-flight facility n_TOF at CERN, Eur. Phys. J. A 49, 27 (2013) [CrossRef] [Google Scholar]
  22. P. Schillebeeckx, et al., Determination of resonance parameters and their covariances from neutron induced reaction cross section data, Nucl. Data Sheets 113, 3054 (2012) [CrossRef] [Google Scholar]
  23. A. Wallner, et al., Stellar and thermal neutron capture cross section of 9Be, Phys. Rev. C 99, 1 (2019) [CrossRef] [Google Scholar]
  24. B.J. McDermott, et al., 181Ta(n, γ) cross section and average resonance parameter measurements in the unresolved resonance region from 24 to 1180 keV using a filtered-beam technique, Phys. Rev. C 96, 014607 (2017) [CrossRef] [Google Scholar]
  25. M. Bhike, et al., Neutron-capture cross-section measurements of 136Xe between 0.4 and 14.8 MeV, Phys. Rev. C 89, 031602 (2014) [CrossRef] [Google Scholar]
  26. J.A. Becker, et al., New Physics Opportunities with GEANIE at LANSCE/WNR, Nucl. Phys. News 7, 11 (1997) [CrossRef] [Google Scholar]
  27. C. Rouki, et al., High resolution measurement of neutron inelastic scattering cross-sections for 23Na, Nucl. Instrum. Meth. A 672, 82 (2012) [CrossRef] [Google Scholar]
  28. D.A. Brown, et al., ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering Data, Nucl. Data Sheets 148, 1 (2018) [CrossRef] [Google Scholar]
  29. A.J. Plompen, et al., The joint evaluated fission and fusion nuclear data library, JEFF-3.3, Eur. Phys. J. A 56, 1 (2020) [CrossRef] [Google Scholar]
  30. O. Iwamoto, et al., Japanese evaluated nuclear data library version 5: JENDL-5, J. Nucl. Sci. Technol. 60, 1 (2023) [CrossRef] [Google Scholar]
  31. A. Trkov, et al., IRDFF-II: A new neutron metrology library, Nucl. Data Sheets 163, 1 (2020) [CrossRef] [Google Scholar]
  32. M.R. Bhat, Evaluated Nuclear Structure Data File (ENSDF), in Nuclear Data for Science and Technology, Research Reports in Physics, (Springer, Berlin Heidelberg, 1992), pp. 817–821 [CrossRef] [Google Scholar]
  33. A.M. Lewis, et al., Templates of expected measurement uncertainties for total cross section observables, EPJ Nuclear Sci. Technol. 9, 34 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  34. P.A. Moldauer, Evaluation of the fluctuation enhancement factor, Phys. Rev. C 14, 764 (1976) [CrossRef] [Google Scholar]
  35. R.C. Block, et al., A multiplicity detector for accurate low-energy capture measurement, in Proceedings of Nuclear Data for Science and Technology 1988, JEARI, Mito, Japan, 1988. [Google Scholar]
  36. B.C. Diven, et al., Radiative capture cross sections for fast neutrons, Phys. Rev. 120, 556 (1960) [CrossRef] [Google Scholar]
  37. K. Wisshak, et al., Neutron capture in 148,150Sm: A sensitive probe of the s-process neutron density, Phys. Rev. C 48, 1401 (1993) [CrossRef] [Google Scholar]
  38. K.H. Guber, et al., A BaF2 detector system for (n, γ) cross section measurements at ORELA, Nucl. Phys. A 621, 254 (1997) [CrossRef] [Google Scholar]
  39. S. Yamamoto, et al., Application of BGO scintillators to absolute measurement of neutron capture cross sections between 0.01 eV and 10 eV, J. Nucl. Sci. Technol. 33, 815 (1996) [CrossRef] [Google Scholar]
  40. K. Kobayashi, et al., Neutron capture cross-section measurement of 99Tc by linac time-of-flight method and the resonance analysis, Nucl. Sci. Eng. 146, 209 (2004) [CrossRef] [Google Scholar]
  41. C. Guerrero, et al., The n_TOF total absorption calorimeter for neutron capture measurements at CERN, Nucl. Instrum. Meth. A 608, 424 (2009) [CrossRef] [Google Scholar]
  42. P.W. Lisowski, et al., The los alamos national laboratory spallation neutron sources, Nucl. Sci. Eng. 106, 208 (1990) [CrossRef] [Google Scholar]
  43. R.C. Block, et al., Neutron radiative capture measurements utilizing a large liquid scintillator detector at the ORNL fast chopper, in Proceedings of the International Conference on Time of Flight Methods, Saclay, France, 1961 [Google Scholar]
  44. R. Reifarth, et al., Background identification and suppression for the measurement of (n, γ) reactions with the DANCE array at LANSCE, Nucl. Instrum. Meth. A 531, 530 (2004) [CrossRef] [Google Scholar]
  45. C. Guerrero, et al., Monte Carlo simulation of the n_TOF Total Absorption Calorimeter, Nucl. Instrum. Meth. A 671, 108 (2012) [CrossRef] [Google Scholar]
  46. S. Agostinelli, et al., GEANT4 a simulation toolkit, Nucl. Instrum. Meth. A 506, 250 (2003) [CrossRef] [Google Scholar]
  47. T. Burrows, Nuclear Data Sheets for A = 49, Nucl. Data Sheets 109, 1879 (2008) [CrossRef] [Google Scholar]
  48. J. Balibrea, et al., Measurement of the neutron capture cross section of the 235U with the CERN n_TOF total absorption calorimeter and a fission tagging based on micromegas detectors, Nucl. Data Sheets 119, 10 (2014) [CrossRef] [Google Scholar]
  49. A. Laminack, et al., Measurement of neutron-capture cross sections of 70,72Ge using the DANCE facility, Phys. Rev. C 106, 025802 (2022) [CrossRef] [Google Scholar]
  50. K. Wisshak, et al., Measurements of keV neutron capture cross sections with a 4π barium fluoride detector: Examples of 93Nb, 103Rh, and 181Ta, Phys. Rev. C 42, 1731 (1990) [CrossRef] [PubMed] [Google Scholar]
  51. D.P. Barry, et al., Neutron transmission and capture measurements and resonance parameter analysis of neodymium from 1 to 500 eV, Nucl. Sci. Eng. 153, 8 (2006) [CrossRef] [Google Scholar]
  52. R.C. Block, et al., Neutron transmission and capture measurements and analysis of Dy from 0.01 to 550 eV, Prog. Nucl. Energy 94, 126 (2017) [CrossRef] [Google Scholar]
  53. C.J. Prokop, et al., Measurement of the 65Cu(n, γ) cross section using the detector for advanced neutron capture experiments at LANL, Phys. Rev. C 99, 055809 (2019) [CrossRef] [Google Scholar]
  54. K. Wisshak, et al., Stellar neutron capture cross section of the unstable s-process branching point 151Sm, Phys. Rev. C 73, 015802 (2006) [CrossRef] [Google Scholar]
  55. F. Voss, et al., Stellar neutron capture cross sections of Pr and Dy isotopes, Phys. Rev. C 59, 1154 (1999) [CrossRef] [Google Scholar]
  56. J.L. Ullmann, et al., The detector for advanced neutron capture experiments: A 4π BaF2 detector for neutron capture measurements at LANSCE, AIP Conf. Proc. 769, 918 (2005) [CrossRef] [Google Scholar]
  57. A. Borella, et al., Determination of the 232Th(n, γ) cross section from 4 to 140 keV at GELINA, Nucl. Sci. Eng. 152, 1 (2006) [CrossRef] [Google Scholar]
  58. G. Aerts, et al., Neutron capture cross section of 232Th measured at the n_TOF facility at CERN in the unresolved resonance region up to 1 MeV, Phys. Rev. C 73, 1 (2006) [CrossRef] [Google Scholar]
  59. K. Kobayashi, et al., Measurement of neutron capture cross section of 237Np by LINAC Time-of-Flight Method and with Linac-driven Lead Slowing-down Spectrometer, J. Nucl. Sci. Technol. 39, 111 (2002) [CrossRef] [Google Scholar]
  60. P.E. Koehler, et al., High-resolution neutron capture and transmission measurements, and the stellar neutron-capture cross section of 88Sr, Phys. Rev. C 62, 15 (2000) [CrossRef] [Google Scholar]
  61. A. Kimura, et al., Current activities and future plans for nuclear data measurements at J-PARC, Eur. Phys. J. A 51, 180 (2015) [CrossRef] [Google Scholar]
  62. J.M. Brown, et al., Validation of unresolved neutron resonance parameters using a thick-sample transmission measurement, Nucl. Sci. Eng. 194, 221 (2020) [CrossRef] [Google Scholar]
  63. M. Moxon, et al., A gamma-ray detector for neutron capture cross-section measurements, Nucl. Instrum. Meth. 24, 445 (1963) [CrossRef] [Google Scholar]
  64. R.L. Macklin, et al., Capture-cross-section studies for 30–220 keV neutrons using a new technique, Phys. Rev. 159, 1007 (1967) [CrossRef] [Google Scholar]
  65. C. Domingo-Pardo, i-TED: A novel concept for high-sensitivity (n, γ) cross-section measurements, Nucl. Instrum. Meth. A 825, 78 (2016) [CrossRef] [Google Scholar]
  66. V. Babiano-Surez, et al., Imaging neutron capture cross sections: i-TED proof-of-concept and future prospects based on Machine-Learning techniques, Eur. Phys. J. A 57, 197 (2021) [CrossRef] [Google Scholar]
  67. A. Borella, et al., The use of C6D6 detectors for neutron induced capture cross-section measurements in the resonance region, Nucl. Instrum. Meth. A 577, 626 (2007) [CrossRef] [Google Scholar]
  68. R.E. Chrien, et al., The Brookhaven High Flux Beam Reactor fast chopper facility, Nucl. Instrum. Meth. 53, 93 (1967) [CrossRef] [Google Scholar]
  69. V. Bondarenko, et al., Nuclear structure of 157Gd, Nucl. Phys. A 726, 175 (2003) [CrossRef] [Google Scholar]
  70. T. Belgya, Prompt gamma activation analysis at the budapest research reactor, Phys. Procedia 31, 99 (2012) [CrossRef] [Google Scholar]
  71. H.D. Choi, et al., Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis (Vienna, IAEA, 2007) [Google Scholar]
  72. F.F. Arbocc, et al., Experimental determination of k0, Q0, E̅ factors and neutron cross-sections for 41 isotopes of interest in Neutron Activation Analysis, J. Radioanal Nucl. Chem. 296, 931 (2013) [CrossRef] [Google Scholar]
  73. C.J. Werner, et al., MCNP Users Manual – Code Version 6.2, Tech. rep., LA-UR-17-29981, 2017 [Google Scholar]
  74. E. Gete, et al., Neutron-induced peaks in Ge detectors from evaporation neutrons, Nucl. Instrum. Meth. A 388, 212 (1997) [CrossRef] [Google Scholar]
  75. N. Fotiades, et al., Measurements and calculations of 238U(n,xnγ) partial γ-ray cross sections, Phys. Rev. C 69, 024601 (2004) [CrossRef] [Google Scholar]
  76. R.B. Firestone, et al., Thermal neutron capture cross section for 56Fe(n,γ), Phys. Rev. C 95, 1 (2017) [CrossRef] [Google Scholar]
  77. F. Bev, Simulation of γ cascades in complex nuclei with emphasis on assessment of uncertainties of cascade-related quantities, Nucl. Instrum. Meth. A 417, 434 (1998) [CrossRef] [Google Scholar]
  78. L.E. Kirsch, et al., RAINIER: A simulation tool for distributions of excited nuclear states and cascade fluctuations, Nucl. Instrum. Meth. A 892, 30 (2018) [CrossRef] [Google Scholar]
  79. D. Jordan, et al., An event generator for simulations of complex β-decay experiments, Nucl. Instrum. Meth. A 828, 52 (2016) [CrossRef] [Google Scholar]
  80. P.G. Young, et al., Comprehensive nuclear model calculations: Introduction to the theory and use of the GNASH code, Tech. rep., LA-12343-MS, 1992 [Google Scholar]
  81. M. Herman, et al., EMPIRE: Nuclear reaction model code system for data evaluation, Nucl. Data Sheets 108, 2655 (2007) [CrossRef] [Google Scholar]
  82. T. Kawano, et al., Monte Carlo simulation for particle and γ-ray emissions in statistical Hauser-Feshbach model, J. Nucl. Sci. Technol. 47, 462 (2010) [CrossRef] [Google Scholar]
  83. A.J. Koning, et al., Modern nuclear data evaluation with the TALYS code system, Nucl. Data Sheets 113, 2841 (2012) [NASA ADS] [CrossRef] [Google Scholar]
  84. L.A. Bernstein, et al., 239Pu(n,2n)238Pu cross section deduced using a combination of experiment and theory, Phys. Rev. C 65, 216011 (2002) [CrossRef] [Google Scholar]
  85. T.N. Massey, et al., Charged-particle emission in neutron reactions on 10B, Phys. Rev. C 105, 054612 (2022) [CrossRef] [Google Scholar]
  86. H.Y. Lee, et al., 16O(n, α) cross section investigation using LENZ instrument at LANSCE, EPJ Web Conf. 122, 05004 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  87. F.J. Hambsch, et al., The 10B(n,α0)/10B(n,α1γ) branching ratio, Nucl. Sci. Eng. 156, 103 (2017) [Google Scholar]
  88. G. Zhang, et al., Measurement of differential and angle-integrated cross sections of the 6Li(n,t)4He reaction in the MeV neutron energy range, Nucl. Instrum. Meth. A 566, 615 (2006) [CrossRef] [Google Scholar]
  89. P.E. Koehler, et al., Two detectors for (n, p) and (n, α) measurements at white neutron sources, Nucl. Instrum. Meth. A 361, 270 (1995) [CrossRef] [Google Scholar]
  90. C. Romano, et al., Measurements of (n, α) cross-section of small samples using a lead-slowing-down-spectrometer, Nucl. Instrum. Meth. A 562, 771 (2006) [CrossRef] [Google Scholar]
  91. S.M. Grimes, et al., Charged-particle-producing reactions of 15-MeV neutrons on 51V and 93Nb, Phys. Rev. C 17, 508 (1978) [CrossRef] [Google Scholar]
  92. L. Cosentino, et al., Experimental setup and procedure for the measurement of the 7Be(n, α)α reaction at n_TOF, Nucl. Instrum. Meth. A 830, 197 (2016) [CrossRef] [Google Scholar]
  93. C. Weiß, et al., The (n,α) reaction in the s-process branching point 59Ni, Nucl. Data Sheets 120, 208 (2014) [CrossRef] [Google Scholar]
  94. P. Kavrigin, et al., 13C(n,α0)10Be cross section measurement with sCVD diamond detector, Eur. Phys. J. A 52, 179 (2016) [CrossRef] [Google Scholar]
  95. D.B. Gayther, A measurement of the 6Li(n, α) cross-section, Ann. Nucl. Energy 4, 515 (1977) [CrossRef] [Google Scholar]
  96. W.P. Poenitz, Measurements of the 6Li(n, α)T cross section in the keV energy range, Zeitschrift fr Physik 268, 359 (1974) [CrossRef] [Google Scholar]
  97. S. Carboni, et al., Particle identification using the technique and pulse shape discrimination with the silicon detectors of the FAZIA project, Nucl. Instrum. Meth. A 664, 251 (2012) [CrossRef] [Google Scholar]
  98. H. Jiang, et al., Measurements of differential and angle-integrated cross sections for the 10B(n,α)7Li reaction in the neutron energy range from 1.0 eV to 2.5 MeV, Chin. Phys. C 43, 124002 (2019) [CrossRef] [Google Scholar]
  99. A. Badal, et al., Trends in particle and nuclei identification techniques in nuclear physics experiments, La Rivista del Nuovo Cimento 45, 189 (2022) [CrossRef] [Google Scholar]
  100. J.B. England, et al., Z-identification of charged particles by signal risetime in silicon surface barrier detectors, Nucl. Instrum. Meth. A 280, 291 (1989) [CrossRef] [Google Scholar]
  101. S.A. Kuvin, et al., Direct measurement of 59Ni(n,p)59Co and 59Ni(n,α)56Fe at fast-neutron energies from 500 keV to 10 MeV, Phys. Rev. C 105, 044608 (2022) [CrossRef] [Google Scholar]
  102. S.A. Kuvin, et al., Nonstatistical fluctuations in the 35Cl(n,p)35S reaction cross section at fast-neutron energies from 0.6 to 6 MeV, Phys. Rev. C 102, 024623 (2020) [CrossRef] [Google Scholar]
  103. M. Drosg, Corrections for neutron source cross section data measured by proton-recoil counter telescopes in the presence of water-spray cooling of the source, Tech. rep., INDC(AUS)-0022, 2020 [Google Scholar]
  104. H.I. Kim, et al., New evaluation on angular distributions and energy spectra for neutron-induced charged-particle measurements, Nucl. Instrum. Meth. A 963, 163699 (2020) [CrossRef] [Google Scholar]
  105. F. Marie, et al., Thermal neutron capture cross-section measurements of 243Am and 242Pu using the new mini-INCA α- and γ-spectroscopy station, Nucl. Instrum. Meth. A 556, 547 (2006) [CrossRef] [Google Scholar]
  106. S. Bisterzo, et al., Measurement of the 209Bi(n,γ)210Big cross section and updated s-process analysis of the Pb/Bi region, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Les Ulis, France, 2007, pp. 2–5 [Google Scholar]
  107. L. Weissman, et al., Measurement of 208Pb(n,γ)209Pb Maxwellian averaged neutron capture cross section, Phys. Rev. C 96, 1 (2017) [CrossRef] [Google Scholar]
  108. C. Goessling, et al., Experimental study of 113Cd β decay using CdZnTe detectors, Phys. Rev. C 72, 4 (2005) [CrossRef] [Google Scholar]
  109. N. Otuka, et al., Uncertainty propagation in activation cross section measurements, Radiat. Phys. Chem. 140, 502 (2017) [CrossRef] [Google Scholar]
  110. G.J. McCallum, et al., Influence of source-detector distance on relative intensity and angular correlation measurements with Ge(Li) spectrometers, Nucl. Instrum. Meth. 130, 189 (1975) [CrossRef] [Google Scholar]
  111. A.N. Berlizov, et al., Software for X- and gamma-ray spectrometry, J. Radioanal Nucl. Chem. 264, 169 (2005) [CrossRef] [Google Scholar]
  112. D.L. Smith, et al., Measurement of the 51V(n,p)51Ti Reaction Cross Section from Threshold to 9.3 MeV by the Activation Method, Tech. rep., ANL/NDM-85, 1984 [Google Scholar]
  113. D.W. Kneff, et al., Experimental and theoretical determination of helium production in copper and aluminum by 14.8-MeV neutrons, Nucl. Technol. 49, 498 (1980) [CrossRef] [Google Scholar]
  114. W. Kutschera, et al., Accelerator mass spectrometry in nuclear physics and astrophysics, Ann. Rev. Nucl. Part. Sci. 40, 411 (1990) [CrossRef] [Google Scholar]
  115. A. Wallner, et al., AMS measurements of 41Ca and 55Fe at VERA – two radionuclides of astrophysical interest, Nucl. Instrum. Meth. B 259, 677 (2007) [CrossRef] [Google Scholar]
  116. C.Y. Chen, et al., Ultrasensitive isotope trace analyses with a magneto-optical trap, Science 286, 1139 (1999) [CrossRef] [Google Scholar]
  117. M. Tessler, et al., Stellar r-process neutron capture cross sections on determined via activation, atom trap trace analysis, and decay counting, Phys. Rev. C 104, 015806 (2021) [CrossRef] [Google Scholar]
  118. H. Nassar, et al., Stellar (n, γ) cross section of 62Ni, Phys. Rev. Lett. 94, 7 (2005) [CrossRef] [Google Scholar]
  119. I. Dillmann, et al., Determination of the stellar (n, γ) cross section of 40Ca with accelerator mass spectrometry, Phys. Rev. C 79, 1 (2009) [CrossRef] [Google Scholar]
  120. P. Steier, et al., VERA, an AMS facility for “all” isotopes, Nucl. Instrum. Meth. B 223–224, 67 (2004) [CrossRef] [Google Scholar]
  121. A. Wallner, et al., Novel Method to Study Neutron Capture of 235U and 238U Simultaneously at keV Energies, Phys. Rev. Lett. 112, 192501 (2014) [CrossRef] [Google Scholar]
  122. M. Paul, et al., Heavy ion separation with a gas-filled magnetic spectrograph, Nucl. Instrum. Meth. A 277, 418 (1989) [CrossRef] [Google Scholar]
  123. M. Schlapp, et al., A new 14 GHz electron-cyclotron-resonance ion source for the heavy ion accelerator facility ATLAS, Rev. Sci. Inst. 69, 631 (1998) [CrossRef] [Google Scholar]
  124. H. Nagai, et al., Measurements of 10Be and 26Al in some meteorites with internal beam monitor method, Nucl. Instrum. Meth. B 29, 266 (1987) [CrossRef] [Google Scholar]
  125. C. Stan-Sion, et al., AMS measurement of the neutron capture cross-section 209Bi(n, γ)210mBi, Nucl. Instrum. Meth. B 259, 739 (2007) [CrossRef] [Google Scholar]
  126. G. Rugel, et al., Measurement of (n,γ) reaction cross sections at stellar energies for 58Ni and 78Se, Nucl. Instrum. Meth. B 259, 683 (2007) [CrossRef] [Google Scholar]
  127. L.K. Fifield, Accelerator mass spectrometry and its applications, Rep. Prog. Phys. 62, 1223 (1999) [CrossRef] [Google Scholar]
  128. H.-A. Synal, Developments in accelerator mass spectrometry, Int. J. Mass Spec. 349–350, 192 (2013) [CrossRef] [Google Scholar]
  129. W. Kutschera, Applications of accelerator mass spectrometry, Int. J. Mass Spec. 349–350, 203 (2013) [CrossRef] [Google Scholar]
  130. A. Wallner, et al., High-sensitivity isobar-free AMS measurements and reference materials for 55Fe, 68Ge and 202gPb, Nucl. Instrum. Meth. B 294, 374 (2013) [CrossRef] [Google Scholar]
  131. A. Wallner, et al., Settling the half-life of 60Fe: Fundamental for a versatile astrophysical chronometer, Phys. Rev. Lett. 114, 1 (2015) [CrossRef] [Google Scholar]
  132. A. Arazi, et al., Measurement of 25Mg(p,γ)26gAl resonance strengths via accelerator mass spectrometry, Phys. Rev. C 74, 1 (2006) [CrossRef] [Google Scholar]
  133. A.M. Lane, et al., R-matrix theory of nuclear reactions, Rev. Mod. Phys. 30, 257 (1958) [CrossRef] [MathSciNet] [Google Scholar]
  134. N.M. Larson, Updated Users Guide for SAMMY: Multilevel R-Matrix Fits to Neutron Data Using Bayes’ Equations, Tech. rep., ORNL/TM-9179/R8, 2008 [Google Scholar]
  135. M.C. Moxon, et al., GEEL REFIT, A least squares fitting program for resonance analysis of neutron transmission and capture data computer code, Tech. rep., AEA-InTec-0630, 1991 [Google Scholar]
  136. G. M. Hale, Use of R-matrix methods for light element evaluations, in Proceedings of the Conference on Nuclear Data Evaluation Methods and Procedures (Brookhaven National Laboratory, Upton, NY, 1981), p. 509 [Google Scholar]
  137. G.M. Hale, et al., Data covariances from R-matrix analyses of light nuclei, Nucl. Data Sheets 123, 165 (2015) [CrossRef] [Google Scholar]
  138. C.W. Reich, et al., Multilevel formula for the fission process, Phys. Rev. 111 (1958) 929. [CrossRef] [Google Scholar]
  139. W. Hauser, et al., The inelastic scattering of neutrons, Phys. Rev. 87, 366 (1952) [CrossRef] [Google Scholar]
  140. B. Becker, et al., Analysis of Geel Spectra – AGS, Tech. rep., NEA/DB/DOC(2014)4, 2014 [Google Scholar]
  141. B. Becker, et al., Data reduction and uncertainty propagation of time-of-flight spectra with AGS, J. Inst. 7, P11002 (2012) [Google Scholar]
  142. N. Otuka, et al., Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): International collaboration between nuclear reaction data centres (NRDC), Nucl. Data Sheets 120, 272 [Google Scholar]
  143. F. Gunsing, et al., EXFOR Data in Resonance Region and Spectrometer Response Function, Tech. rep., INDC(NDS)-0647, 2012 [Google Scholar]
  144. D. Neudecker, et al., Template for estimating uncertainties of measured neutron-induced fission cross-sections, EPJ Nuclear Sci. Technol. 4, 21 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  145. G. Leinweber, et al., Neutron capture and total cross-section measurements and resonance parameters of gadolinium, Nucl. Sci. Eng. 154, 261 (2006) [CrossRef] [Google Scholar]
  146. P. Žugec, et al., Experimental neutron capture data of 58Ni, Phys. Rev. C 89, 014605 (2014) [CrossRef] [Google Scholar]
  147. Y. Danon, et al., Fission cross-section measurements of 247Cm, 254Es, and 250Cf from 0.1 eV to 80 keV, Nucl. Sci. Eng. 109, 341 (1991) [CrossRef] [Google Scholar]
  148. R.C. Block, et al., Neutron transmission and capture measurements of 133Cs from 600 to 2000 eV, Nucl. Sci. Eng. 195, 679 (2021) [CrossRef] [Google Scholar]
  149. M.J. Trbovich, et al., Hafnium resonance parameter analysis using neutron capture and transmission experiments, Nucl. Sci. Eng. 161, 303 (2009) [CrossRef] [Google Scholar]
  150. W. Ratynski, et al., Neutron capture cross section of 197Au: A standard for stellar nucleosynthesis, Phys. Rev. C 37, 595 (1988) [CrossRef] [PubMed] [Google Scholar]
  151. V. Semkova, et al., Uncertainties of calculated coincidence-summing correction factors in gamma-ray spectrometry, EPJ Web Conf. 239, 12003 (2020) [CrossRef] [EDP Sciences] [Google Scholar]
  152. A. Wallner, et al., Precise measurement of the thermal and stellar 54Fe(n,γ)55Fe cross sections via accelerator mass spectrometry, Phys. Rev. C 96, 025808 (2017) [CrossRef] [Google Scholar]
  153. H. Bai, et al., Measurement of the differential cross sections and angle-integrated cross sections of the 6Li(n,t)4He reaction from 1.0 eV to 3.0 MeV at the CSNS Back-n white neutron source, Chin. Phys. C 44, 014003 (2020) [CrossRef] [Google Scholar]
  154. M. Drosg, et al., Calibration of a Li-glass detector for neutron energies above 50 keV by the 1H(t,n)3He reaction, Nucl. Instrum. Meth. B 94, 319 (1994) [CrossRef] [Google Scholar]
  155. L.C. Mihailescu, et al., Investigations for the use of the fast digitizers with detectors for radiative capture measurements at GELINA, Nucl. Instrum. Meth. A 600, 453 (2009) [CrossRef] [Google Scholar]
  156. M.S. Moore, Rate dependence of counting losses in neutron time-of-flight measurements, Nucl. Instrum. Meth. 169, 245 (1980) [CrossRef] [Google Scholar]
  157. J.R. Vanhoy, et al., Templates of expected measurement uncertainties for (n,xn) cross sections, EPJ Nuclear Sci. Technol. 9, 31 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  158. N. Yamamuro, et al., Reliability of the weighting function for the pulse height weighting technique, Nucl. Instrum. Meth. 133, 531 (1976) [CrossRef] [Google Scholar]
  159. R.C. Haight, et al., Charged-particle emission in reactions of 15-MeV neutrons with 89Y, 90Zr, and 92,94,95,96Mo, Phys. Rev. C 23, 700 (1981) [CrossRef] [Google Scholar]
  160. S.M. Grimes, et al., Charged-particle emission in reactions of 15-MeV neutrons with isotopes of chromium, iron, nickel, and copper, Phys. Rev. C 19, 2127 (1979) [CrossRef] [Google Scholar]
  161. S. Kunieda, et al., Measurement and model analysis of (n,xα) cross sections for Cr, Fe, 59Co, and 58,60Ni from threshold energy to 150 MeV, Phys. Rev. C 85, 054602 (2012) [CrossRef] [Google Scholar]
  162. M. Kerveno, et al., How to produce accurate inelastic cross sections from an indirect measurement method?, EPJ Nuclear Sci. Technol. 4, 23 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  163. A.M. Lewis, et al., Ratio method for estimating uncertainty in calculated gamma cascades, Eur. Phys. J. A 55, 141 (2019) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.