Open Access
EPJ Nuclear Sci. Technol.
Volume 3, 2017
Article Number 14
Number of page(s) 8
Published online 15 May 2017
  1. P. Romojaro, F. Alvarez-Velarde, I. Kodeli, A. Stankovskiy, C.J. Diez, O. Cabellos, N. Garcia-Herranz, J. Heyse, P. Schillebeeckx, G. Van den Eynde, G. Zerovnik, Nuclear data sensitivity and uncertainty analysis of effective neutron multiplication factor in various MYRRHA core configurations, Ann. Nucl. Energy 110, 330 (2017) [CrossRef] [Google Scholar]
  2. M. Aufiero, M. Martin, M. Fratoni, XGPT: extending Monte Carlo generalized perturbation theory capabilities to continuous-energy sensitivity functions, Ann. Nucl. Energy 96, 295 (2016) [CrossRef] [Google Scholar]
  3. D. Rochman, A. Vasiliev, H. Ferroukhi, T. Zhu, S.C. van der Marck, A.J. Koning, Nuclear data uncertainty for criticality-safety: Monte Carlo vs. linear perturbation, Ann. Nucl. Energy 92, 150 (2016) [CrossRef] [Google Scholar]
  4. M. Pusa, Incorporating sensitivity and uncertainty analysis to a lattice physics code with application to CASMO-4, Ann. Nucl. Energy 40, 153 (2012) [CrossRef] [Google Scholar]
  5. W. Zwermann, A. Aures, L. Gallner, V. Hannstein, B. Krzykacz-Hausmann, K. Velkov, J.S. Martinez, Nuclear data uncertainty and sensitivity analysis with XSUSA for fuel assembly depletion calculations, Nucl. Eng. Technol. 46, 343 (2014) [CrossRef] [Google Scholar]
  6. M.L. Williams, B.T. Rearden, SCALE-6 Sensitivity/uncertainty methods and covariance data, Nucl. Data Sheets 109, 2796 (2008) [CrossRef] [Google Scholar]
  7. A. Hoefer, O. Buss, M. Hennebach, M. Schmid, P. Porsch, MOCABA: a general Monte Carlo-Bayes procedure for improved predictions of integral functions of nuclear data, Ann. Nucl. Energy 77, 514 (2015) [CrossRef] [Google Scholar]
  8. C.J. Diez, O. Cabellos, D. Rochman, A.J. Koning, J.S. Martinez, Monte Carlo uncertainty propagation approaches in ADS burn-up calculations, Ann. Nucl. Energy 54, 27 (2013) [Google Scholar]
  9. N. Garcia-Herranz, O. Cabellos, J. Sanz, J. Juan, J.C. Kuijper, Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations, Ann. Nucl. Energy 35, 714 (2008) [CrossRef] [Google Scholar]
  10. E. Alhassan, H. Sjostrand, P. Helgesson, M. Osterlund, S. Pomp, A.J. Koning, D. Rochman, On the use of integral experiments for uncertainty reduction of reactor macroscopic parameters within the TMC methodology, Prog. Nucl. Energy 88, 43 (2016) [CrossRef] [Google Scholar]
  11. D. Rochman, O. Leray, A. Vasiliev, H. Ferroukhi, A.J. Koning, M. Fleming, J.C. Sublet, A Bayesian Monte Carlo method for fission yield covariance information, Ann. Nucl. Energy 95, 125 (2016) [CrossRef] [Google Scholar]
  12. P. Helgesson, D. Rochman, H. Sjostrand, E. Alhassan, A.J. Koning, UO2 versus MOX: propagated nuclear data uncertainty for keff, with burnup, Nucl. Sci. Eng. 177, 321 (2014) [CrossRef] [Google Scholar]
  13. D. Rochman, O. Leray, M. Hursin, H. Ferroukhi, A. Vasiliev, A. Aures, F. Bostelmann, W. Zwermann, O. Cabellos, C.J. Diez, J. Dyrda, N. Garcia-Herranz, E. Castro, S. van der Marck, H. Sjostrand, A. Hernandez, M. Fleming, J.-Ch. Sublet, L. Fiorito, Nuclear data uncertainties for typical LWR fuel assemblies and a simple reactor core, Nucl. Data Sheets 139, 1 (2017) [CrossRef] [Google Scholar]
  14. O. Leray, H. Ferroukhi, M. Hursin, A. Vasiliev, D. Rochman, Methodology for core analysis with nuclear data uncertainty quantification and application to Swiss PWR operated cycles, Ann. Nucl. Energy (2016) [Google Scholar]
  15. M.B. Chadwick, P. Oblozinsky, M. Herman, N.M. Greene, R.D. McKnight, D.L. Smith, P.G. Young, R.E. MacFarlane, G.M. Hale, S.C. Frankle, A.C. Kahler, T. Kawano, R.C. Little, D.G. Madland, P. Moller, R.D. Mosteller, P.R. Page, P. Talou, H. Trellue, M.C. White, W.B. Wilson, R. Arcilla, C.L. Dunford, S.F. Mughabghab, B. Pritychenko, D. Rochman, A.A. Sonzogni, C.R. Lubitz, T.H. Trumbull, J.P. Weinman, D.A. Brown, D.E. Cullen, D.P. Heinrichs, D.P. McNabb, H. Derrien, M.E. Dunn, N.M. Larson, L.C. Leal, A.D. Carlson, R.C. Block, J.B. Briggs, E.T. Cheng, H.C. Huria, M.L. Zerkle, K.S. Kozier, A. Courcelle, V. Pronyaev, S.C. van der Marck, ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology, Nucl. Data Sheets 107, 2931 (2006) [Google Scholar]
  16. M. Chadwick, M. Herman, P. Oblozinsky, M.E. Dunn, Y. Danon, A.C. Kahler, D.L. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, R. Brewer, D.A. Brown, R. Capote, A.D. Carlson, Y.S. Cho, H. Derrien, K. Guber, G.M. Hale, S. Hoblit, S. Holloway, T.D. Johnson, T. Kawano, B.C. Kiedrowski, H. Kim, S. Kunieda, N.M. Larson, L. Leal, J.P. Lestone, R.C. Little, E.A. McCutchan, R.E. MacFarlane, M. MacInnes, C.M. Mattoon, R.D. McKnight, S.F. Mughabghab, G.P.A. Nobre, G. Palmiotti, A. Palumbo, M.T. Pigni, V.G. Pronyaev, R.O. Sayer, A.A. Sonzogni, N.C. Summers, P. Talou, I.J. Thompson, A. Trkov, R.L. Vogt, S.C. van der Marck, A. Wallner, M.C. White, D. Wiarda, P.G. Young, ENDF/B-VII.1 Nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112, 2887 (2011) [CrossRef] [Google Scholar]
  17. K. Shibata, O. Iwamoto, T. Nagagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohasawa, T. Murata, H. Matsunobu, A. Zukeran, S. Kamada, J. Katakura, JENDL-4.0: a new library for nuclear science and engineering, J. Nucl. Sci. Technol. 48, 1 (2011) [Google Scholar]
  18. A.J. Koning, D. Rochman, Modern nuclear data evaluation with the TALYS code system, Nucl. Data Sheets 113, 2841 (2012) [CrossRef] [Google Scholar]
  19. A.J. Koning, D. Rochman, Towards sustainable nuclear energy: putting nuclear physics to work, Ann. Nucl. Energy 35, 2024 (2008) [CrossRef] [Google Scholar]
  20. E. Bauge, P. Dossantos-Uzarralde, Evaluation of the covariance matrix of 239Pu neutronic cross sections in the continuum using the backward-forward Monte-Carlo method, J. Korean Phys. Soc. 59, 1218 (2011) [CrossRef] [Google Scholar]
  21. H.Y. Lee, R.C. Haight, T.A. Bredeweg, M. Devlin, N. Fotiades, M. Jandel, A. Laptev, R.O. Nelson, J.M. O'Donnell, B.A. Perdue, T.N. Taddeucci, J.L. Ullmann, S.A. Wender, M.C. White, C.Y. Wu, A. Chyzr, R.A. Henderson, E. Kwan, Prompt fission neutron spectrum study at LANSCE: CHI-NU project, in Proceedings of the Fifth International Conference on ICFN5, Sanibel Island, Florida, USA, 4–10 November 2012 (2012) [Google Scholar]
  22. H. Leeb, St. Gundacker, D. Neudecker, V. Wildpaner, The GENEUS Project – development of an evaluation tool, J. Korean Phys. Soc. 59, 1230 (2011) [CrossRef] [Google Scholar]
  23. R. Capote, D.L. Smith, An investigation of the performance of the unified Monte Carlo method of neutron cross section data evaluation, Nucl. Data Sheets 109, 2725 (2008) [Google Scholar]
  24. R. Capote, D. Smith, A. Trkov, M. Meghzifene, A new formulation of the Unified Monte Carlo approach (UMC-B), and cross-section evaluation for the dosimetry reaction 55Mn(n,γ)56Mn, J. ASTM Int. 9, JAI104115 (2012) [Google Scholar]
  25. A.J. Koning, Bayesian Monte Carlo method for nuclear data evaluation, Eur. Phys. J. A 51, 184 (2015) [CrossRef] [EDP Sciences] [Google Scholar]
  26. D. Rochman, A.J. Koning, S.C. van der Marck, Improving neutronics simulations and uncertainties via a selection of nuclear data, Eur. Phys. J. A 51, 182 (2015) [CrossRef] [EDP Sciences] [Google Scholar]
  27. J.B. Briggs Ed., International Handbook of evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03/I (Organisation for Economic Co-operation and Development, Nuclear Energy Agency, 2004) [Google Scholar]
  28. T. Goorley, MCNP 6.1.1–Beta Release Notes, Los Alamos National Laboratory, Report LA-UR-14-24680, June 2014 [Google Scholar]
  29. A.J. Koning, D. Rochman, J. Kopecky, J.Ch. Sublet, E. Bauge, S. Hilaire, P. Romain, B. Morillon, H. Duarte, S. van der Marck, S. Pomp, H. Sjostrand, R. Forrest, H. Henriksson, O. Cabellos, S. Goriely, J. Leppanen, H. Leeb, A. Plompen, R. Mills, TENDL-2014: TALYS-based evaluated nuclear data library (2014), [Google Scholar]
  30. T. Zhu, A. Vasiliev, H. Ferroukhi, D. Rochman, A. Pautz, Testing the sampling-based NUSS-RF tool for the nuclear data related global sensitivity analysis with Monte Carlo neutronics calculations, Nucl. Sci. Eng. 69, 184 (2016) [Google Scholar]
  31. D. Rochman, A.J. Koning, Evaluation and adjustment of the neutron-induced reactions of 63,65Cu, Nucl. Sci. Eng. 170, 265 (2012) [CrossRef] [Google Scholar]
  32. A. Vasiliev, D. Rochman, M. Pecchia, H. Ferroukhi, Energies 9, 1039 (2016) [CrossRef] [Google Scholar]
  33. E. Bauge, M. Dupuis, S. Hilaire, S. Péru, A.J. Koning, D. Rochman, S. Goriely, Nucl. Data Sheets 118, 32 (2014) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.