Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 3, 2017
Article Number 13
Number of page(s) 13
DOI https://doi.org/10.1051/epjn/2017005
Published online 01 May 2017
  1. C. Poinssot, S. Bourg, N. Ouvrier, N. Combernoux, C. Rostaing, M. Vargas-Gonzalez, J. Bruno, Energy 69, 199 (2014) [CrossRef] [Google Scholar]
  2. M. Bourgeois, Retraitement du combustible: Principales opérations (Techniques de l'ingénieur, 2000) [Google Scholar]
  3. B. Boullis, Treatment and recycling of spent nuclear fuels, in DEN Monographs (Éditions du Moniteur, Paris, 2008), p. 7 [Google Scholar]
  4. C. Poinssot, C. Rostaing, S. Grandjean, B. Boullis, Proc. Chem. 7, 349 (2012) [Google Scholar]
  5. B. Hermann, Dissolution of unirradiated UO2-pellets in nitric acid. Technical document Ref. 3673 (Karlsruher Institut für Technologie, 1984) [Google Scholar]
  6. S. Fournier, Étude de la dissolution des oxydes mixtes (U,Pu)O2 à forte teneur en plutonium, PhD thesis, Université de Montpellier, 2000 [Google Scholar]
  7. D. Sicsic, Modélisation thermodynamique et cinétique de la réduction de l'acide nitrique concentré, PhD thesis, Université Pierre et Marie Curie, 2011 [Google Scholar]
  8. J.-P. Glatz, H. Bokelund, S. Zierfuß, Radiochim. Acta 51, 17 (1990) [Google Scholar]
  9. T. Sakurai, A. Takahashi, N. Ishikawa, Y. Komaki, Nucl. Technol. 83, 24 (1988) [CrossRef] [Google Scholar]
  10. T. Sakurai, A. Takahashi, N. Ishikawa, Y. Komaki, M. Ohnuki, T. Adachi, J. Nucl. Sci. Technol. (Abingdon, U.K.) 30, 533 (1993) [CrossRef] [Google Scholar]
  11. O.N. Pogorelko, O.A. Ustinov, Radiochemistry 35, 182 (1993) [Google Scholar]
  12. M. Shabbir, R.G. Robins, J. Appl. Chem. 18, 129 (1968) [CrossRef] [Google Scholar]
  13. R.F. Taylor, E.W. Sharratt, L.E.M. de Chazal, D.H. Logsdail, Processing in limited geometry. Part III. The dissolution of uranium dioxide sintered pellets in nitric acid. Technical document Ref. AERE-R 3678 (United Kingdom Atomic Energy Authority, 1962) [Google Scholar]
  14. R.F. Taylor, E.W. Sharratt, L.E.M. de Chazal, D.H. Logsdail, J. Appl. Chem. 13, 32 (1963) [CrossRef] [Google Scholar]
  15. M. Benedict, T.H. Pigford, H.W. Levi, Nuclear chemical engineering (McGraw-Hill Education, 1981), 2nd ed. [Google Scholar]
  16. J.B. Lefers, Absorption of nitrogen oxides into diluted and concentrated nitric acid, PhD thesis, Technische Universiteit Delft, 1980 [Google Scholar]
  17. T. Fukasawa, Y. Ozawa, F. Kawamura, Nucl. Technol. 94, 108 (1991) [Google Scholar]
  18. C. Delwaulle, A. Magnaldo, A. Salvatores, E. Schaer, J.-L. Houzelot, B. Rodier, E. Bossé, Chem. Eng. J. 174, 383 (2011) [CrossRef] [Google Scholar]
  19. C. Delwaulle, Étude de la dissolution du dioxyde d'uranium en milieu nitrique : une nouvelle approche visant à la compréhension des mécanismes interfaciaux, PhD thesis, Institut National Polytechnique de Lorraine, 2011 [Google Scholar]
  20. M. Shabbir, R.G. Robins, J. Appl. Chem. 19, 52 (1969) [CrossRef] [Google Scholar]
  21. Y. Ikeda, Y. Yasuike, Y. Takashima, Y.-Y. Park, Y. Asano, H. Tomiyasu, Nucl. Sci. Technol. 30, 118 (1993) [Google Scholar]
  22. P. Berger, Étude du mécanisme de la dissolution par oxydoréduction chimique et électrochimique des bioxydes d'actinides (UO2, NpO2, PuO2, AmO2) en milieu aqueux acides, PhD thesis, Université Paris VI, 1988 [Google Scholar]
  23. C. Brun, F. Valdivieso, M. Pijolat, M. Soustelle, Phys. Chem. Chem. Phys. 1, 471 (1999) [CrossRef] [Google Scholar]
  24. K.W. Song, K.S. Kim, Y.H. Jung, J. Nucl. Mater. 279, 356 (2000) [CrossRef] [Google Scholar]
  25. F. Grønwold, J. Inorg. Nucl. Chem. 1, 357 (1955) [CrossRef] [Google Scholar]
  26. H.D. Greiling, K.H. Lieser, Radiochim. Acta 35, 79 (1984) [CrossRef] [Google Scholar]
  27. A.L. Uriarte, R.H. Rainey, Dissolution of high-density UO2, PuO2 and UO2-PuO2 pellets in inorganic acids. Technical document Ref. ORNL-3695 (Oak Ridge National Laboratory, 1965) [Google Scholar]
  28. A. Briggs, Dislocation etching and chemical polishing studies on UO2 single crystals. Technical document Ref. AERE-M 859 (United Kingdom Atomic Energy Authority, 1961) [Google Scholar]
  29. A. Briggs, Br. Ceram. Trans. J. 60, 505 (1961) [Google Scholar]
  30. M. Shabbir, R.G. Robins, J. Nucl. Mater. 25, 236 (1968) [CrossRef] [Google Scholar]
  31. M.R. Castell, S.L. Duradev, C. Muggelberg, A.P. Sutton, G.A.D. Briggs, D.T. Goddard, J. Vac. Sci. Technol. A 16, 1055 (1998) [CrossRef] [Google Scholar]
  32. C. Muggelberg, M.R. Castell, G.A.D. Briggs, D.T. Goddard, Surf. Sci. 402, 673 (1998) [CrossRef] [Google Scholar]
  33. C. Muggelberg, M.R. Castell, G.A.D. Briggs, D.T. Goddard, Appl. Surf. Sci. 142, 124 (1999) [CrossRef] [Google Scholar]
  34. E.-H. Kim, D.-S. Hwang, W.-M. Choung, J.-H. Park, J.H. Yoo, C.-S. Choi, Radiochim. Acta 83, 147 (1998) [Google Scholar]
  35. Y. Zhao, J. Chen, J. Nucl. Mater. 373, 53 (2008) [CrossRef] [Google Scholar]
  36. Y. Zhao, J. Chen, Radiochim. Acta 96, 467 (2008) [CrossRef] [Google Scholar]
  37. Y. Zhao, J. Chen, Sci. China. Ser. B 51, 700 (2008) [Google Scholar]
  38. T. Fukasawa, Y. Ozawa, J. Radioanal. Nucl. Chem. Lett. 106, 345 (1986) [CrossRef] [Google Scholar]
  39. J. Villermaux, Génie de la réaction chimique : conception et fonction-nement des réacteurs. Techniques et documentation − Lavoisier (1985) [Google Scholar]
  40. O. Levenspiel, Chemical reaction engineering (Wiley, 1999), 3rd ed. [Google Scholar]
  41. Y. Wada, K. Morimoto, H. Tomiyashu, Radiochim. Acta 72, 83 (1996) [Google Scholar]
  42. J. Kumar Gelatar, B. Kumar, M. Sampath, S. Kumar, U. Kamachi Mudali, R. Natarajan, J. Radioanal. Nucl. Chem. 303, 1029 (2015) [CrossRef] [Google Scholar]
  43. B.F. Myasoedov, Y.M. Kulyako, J. Radioanl. Nucl. Chem. 296, 1127 (2013) [CrossRef] [Google Scholar]
  44. K. Nishimura, T. Chikazawa, S. Hasegawa, H. Tanaka, Y. Ikeda, Y. Ya-suike, Y. Takashima, J. Nucl. Sci. Technol. (Abingdon, U.K.) 32, 157 (1995) [Google Scholar]
  45. Y. Yasuike, Y. Ikeda, M. Kumagai, K. Hoashi, Y. Takashima, S. Mat-sumoto, K. Nishimura, in Third International Conference on Nuclear Fuel Reprocessing and Waste Management. RECOD'91 Proceedings, Japan Atomic Industrial Forum, editor (1991), Vol. 2, pp. 692–697 [Google Scholar]
  46. M.J. Carrott, P.M.A. Cook, O.D. Fox, C.J. Maher, S.L.M. Schroeder, Proc. Chem. 7, 92 (2012) [CrossRef] [Google Scholar]
  47. E.-H. Kim, D.-S. Hwang, J.H. Yoo, J. Radioanal. Nucl. Chem. 245, 567 (2000) [CrossRef] [Google Scholar]
  48. S. Homma, J. Koga, S. Matsumoto, T. Kawata, J. Nucl. Sci. Technol. (Abingdon, U.K.) 30, 956 (1993) [CrossRef] [Google Scholar]
  49. A. Inoue, J. Nucl. Mater. 138, 152 (1986) [CrossRef] [Google Scholar]
  50. A. Inoue, Nucl. Technol. 90, 186 (1990) [CrossRef] [Google Scholar]
  51. L. Claparede, F. Tocino, S. Szenknect, A. Mesbah, N. Clavier, N. Dacheux, J. Nucl. Mater. 457, 304 (2015) [CrossRef] [Google Scholar]
  52. N. Desigan, E. Augustine, R. Murali, N.K. Pandey, U. Kamachi Mu-dali, R. Natarajan, J.B. Joshi, Prog. Nucl. Energy 83, 52 (2015) [CrossRef] [Google Scholar]
  53. Y. Ikeda, Y. Yasuike, Y. Takashima, K. Nishimura, H. Tomiyasu, J. Nucl. Sci. Technol. (Abingdon, U.K.) 30, 485 (1993) [CrossRef] [Google Scholar]
  54. F. Tocino, S. Szenknect, A. Mesbah, N. Clavier, N. Dacheux, Prog. Nucl. Energy 72, 101 (2014) [CrossRef] [Google Scholar]
  55. M.M. Mbogoro, M.E. Snowden, M.A. Edwards, M. Peruffo, P.R. Unwin, J. Phys. Chem. C 115, 10147 (2011) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.