| Issue |
EPJ Nuclear Sci. Technol.
Volume 11, 2025
Special Issue on ‘Overview of recent advances in HPC simulation methods for nuclear applications’, edited by Andrea Zoia, Elie Saikali, Cheikh Diop and Cyrille de Saint Jean
|
|
|---|---|---|
| Article Number | 67 | |
| Number of page(s) | 16 | |
| DOI | https://doi.org/10.1051/epjn/2025057 | |
| Published online | 20 October 2025 | |
- S.E. Aumeier et al., Microreactor Applications in US Markets: Evaluation of State-Level Legal, Regulatory, Economic and Technology Implications, Tech. rep., Idaho National Laboratory (INL), Idaho Falls, ID, United States (2023) [Google Scholar]
- B.N. Hanna et al., Technoeconomic Evaluation of Microreactor Using Detailed Bottom-up Estimate, Tech. rep., Idaho National Laboratory (INL), Idaho Falls, ID, United States, (2024) [Google Scholar]
- V.P. Bobkov et al., Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data (International Atomic Agency, Vienna, 2009) [Google Scholar]
- H.G. Rickover, L.D. Geiger, B. Lustman, History of the development of zirconium alloys for use in nuclear reactors (United States Energy Research and Development Administration Division of Naval Reactors, 1975), DOI: https://doi.org/10.2172/4240391 [Google Scholar]
- V.K. Mehta, P. McClure, D. Kotlyar, Selection of a space reactor moderator using lessons learned from snap and anp programs, in AIAA Propulsion and Energy 2019 Forum (2019), p. 4451 [Google Scholar]
- S.S. Voss, Snap (space nuclear auxiliary power) reactor overview, Tech. rep., Airforce Weapons Lab Kirtland, (1984), DOI: https://doi.org/10.21236/ADA146831 [Google Scholar]
- O. Courty, A.T. Motta, J.D. Hales, Modeling and simulation of hydrogen behavior in Zircaloy-4 fuel cladding, J. Nucl. Mater. 452, 311 (2014) [Google Scholar]
- J. Huangs et al., Estimation of hydrogen redistribution in zirconium hydride under temperature gradient, J. Nucl. Sci. Technol. 37, 887 (2000) [Google Scholar]
- G. Majer, W. Renz, R.G. Barnes, The mechanism of hydrogen diffusion in zirconium dihydrides, J. Phys. Condens. Matter 6, 2935 (1994) [Google Scholar]
- S.H. Choi et al., Conceptual core design and neutronics analysis for a space heat pipe reactor using a low enriched uranium fuel, Nucl. Eng. Des. 387, 111603 (2022) [Google Scholar]
- W.R. Kendrick, Neutronic-Thermal Simulation of Micro Reactor Designs for the Purpose of Analyzing the Impact of Thermal Expansion and Hydrogen Migration in Metal Hydride Moderator, Ph.D. thesis, Massachusetts Institute of Technology, 2024 [Google Scholar]
- V.K. Mehta et al., Capturing multiphysics effects in hydride moderated microreactors using marm, Ann. Nucl. Energy 172, 109067 (2022) [Google Scholar]
- K. Barraclough, C. Beevers, Some observations on the phase transformations in zirconium hydrides, J. Nucl. Mater. 34, 125 (1970) [Google Scholar]
- A.P. Shivprasad et al., Advanced Moderator Material Handbook (FY22 Rev. 2), Tech. Rep. (Sept. 2022), DOI: https://doi.org/10.2172/1921985 [Google Scholar]
- M.S. Ellis, Methods for Including Multiphysics Feedback in Monte Carlo Reactor Physics Calculations, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2017 [Google Scholar]
- D.P. Griesheimer, W.R. Martin, J.P. Holloway, Convergence properties of Monte Carlo functional expansion tallies, J. Comput. Phys. 211, 129 (2006) [CrossRef] [Google Scholar]
- D.P. Griesheimer, Functional expansion tallies for Monte Carlo simulations, Ph.D. thesis, University of Michigan, 2005 [Google Scholar]
- P.K. Romano et al., OpenMC: A state-of-the-art Monte Carlo code for research and development, Ann. Nucl. Energy 82, 90 (2015) [CrossRef] [Google Scholar]
- F. Brown, W. Martin, Direct sampling of Monte Carlo flight paths in media with continuously varying cross-sections, in ANS Mathematics and Computation Topical Meeting (2003) [Google Scholar]
- J. Leppänen et al., Serpent – A continuous-energy Monte Carlo reactor physics burnup calculation code, in VTT Technical Research Centre of Finland (2013), Vol. 4, pp. 2023–09 [Google Scholar]
- J. Leppänen, Modeling of nonuniform density distributions in the serpent 2 Monte Carlo Code, Nucl. Sci. Eng. 174, 318 (2013) [Google Scholar]
- B.L. Wendt, Functional Expansions Methods: Optimizations, Characterizations, and Multiphysics Practices Generalized Data Representation and Transfer Solutions in Multiphysics Simulations through the Characterization and Advancement of Functional Expansion Implementations, Ph.D. thesis, Idaho State University, 2018 [Google Scholar]
- A. Davis, P. Shriwise, X. Zhang, DAG-OpenMC, Trans. Am. Nucl. Soc. 122, 395 (2020), DOI: https://doi.org/10.13182/T122-32104 [Google Scholar]
- T.J. Tautgises et al., Acceleration techniques for direct use of CAD-based geometries in Monte Carlo radiation transport, in M&C 2009 Saratoga Springs NY (2009) [Google Scholar]
- G. Giudicelli et al., 3.0 – MOOSE: Enabling massively parallel multiphysics simulations, SoftwareX 26, 101690 (2024) [CrossRef] [Google Scholar]
- E. Shemon et al., MOOSE reactor module: An open-source capability for meshing nuclear reactor geometries, Nucl. Sci. Eng. 197, 1656 (2023) [Google Scholar]
- S. Terlizzi, V. Labouré, Asymptotic hydrogen redistribution analysis in yttrium-hydride-moderated heat-pipe-cooled microreactors using DireWolf, Ann. Nucl. Energy 186, 109735 (2023) [Google Scholar]
- M.N. Cinbiz et al., Considerations for hydride moderator readiness in microreactors, Nucl. Technol. 209, S136 (2023) [Google Scholar]
- T.D. Blacker, W.J. Bohnhoff, T.L. Edwards, CUBIT mesh generation environment. Volume 1: Users manual, Tech. rep., Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), Tech. Rep. (1994) [Google Scholar]
- C.S. Kim et al., Development of key technologies for korean space heat pipe reactor, in Nuclear and Emergine Technologies for Space 2021, Track 2 (Oak Ridge National Laboratories, 2021) [Google Scholar]
- S.N. Lee et al., Coupled analysis system development on heat pipe reactor, Nucl. Eng. Des. 437, 114003 (2025) [Google Scholar]
- S. Patnaik, Comparative analysis of temperature dependent properties of commercial nuclear fuel pellet and surrogates undergoing cracking: A review, Ceram. Int. 46, 24765 (2020) [Google Scholar]
- E. Murphy, F. Havelock, Emissivity of zirconium alloys in air in the temperature range 100–400°C, J. Nucl. Mater. 60, 167 (1976) [Google Scholar]
- J. Knopp, Radiative and convective properties of 316L Stainless Steel fabricated using the Laser Engineered Net Shaping Process, M.A. thesis, Northern Illinois University, 2016 [Google Scholar]
- C. Taylor et al., Properties of Uranium-Zirconium Hydride Moderated Nuclear Fuel Synthesized by Powder Metallurgy, Tech. rep. LA-UR-22-29969, Los Alamos National Laboratory (2022) [Google Scholar]
- A. Novak et al., Coupled Monte Carlo and thermal-fluid modeling of high temperature gas reactors using cardinal, Ann. Nucl. Energy 177, 109310 (2022) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
