| Issue |
EPJ Nuclear Sci. Technol.
Volume 11, 2025
Status and advances of Monte Carlo codes for particle transport simulation
|
|
|---|---|---|
| Article Number | 66 | |
| Number of page(s) | 15 | |
| DOI | https://doi.org/10.1051/epjn/2025047 | |
| Published online | 20 October 2025 | |
- S. Agostinelli et al., “Geant4 – A Simulation Toolkit”, Nucl. Instrum. Meth. A 506, 250 (2003) [CrossRef] [Google Scholar]
- J. Allison et al., “Geant4 Developments and Applications”, IEEE Trans. Nucl. Sci. 53, 270 (2006) [CrossRef] [Google Scholar]
- J. Allison et al., “Recent Developments in Geant4”, Nucl. Instrum. Meth. A 835, 186 (2016) [CrossRef] [Google Scholar]
- M. Asai et al., “Recent Developments in Geant4”, Ann. Nucl. Energy 82, 19 (2015) [Google Scholar]
- J.R. Madsen, Parallel Tasking Library (PTL) – Lightweight C++11 multithreading tasking system featuring thread-pool, task-groups, and lock-free task queue (2020), https://github.com/jrmadsen/PTL [Google Scholar]
- A. Gheata et al., VecGeom (2015), https://gitlab.cern.ch/VecGeom/VecGeom [Google Scholar]
- J. Apostolakis et al., “A vectorization approach for multifaceted solids in VecGeom”, EPJ Web Conf. 214, 02025 (2019) [Google Scholar]
- G. Amadio et al., “GeantV: Results from the prototype of concurrent vector particle transport simula- tion in HEP”, Comput. Softw. Big Sci. 5, 3 (2021) [Google Scholar]
- AIDA, Common Software Tools (2015), https://gitlab.cern.ch/VecGeom/VecGeom [Google Scholar]
- ATLAS Collaboration, “Software and computing for Run 3 of the ATLAS experiment at the LHC” (2024), ArXiv eprint [arXiv:https://arxiv.org/abs/2404.06335] (hep-ex) [Google Scholar]
- S. Norraphat et al., “Full Simulation of CMS for Run-3 and Phase-2”, EPJ Web Conf. 295, 03017 (2024), https://doi.org/10.1051/epjconf/202429503017 [Google Scholar]
- J. Dormand, P. Prince, “A family of embedded Runge-Kutta formulae”, J. Comput. Appl. Math. 6, 19 (1980) [CrossRef] [MathSciNet] [Google Scholar]
- Fermilab. Muon g-2, 2024, url: https://muon-g-2.fnal.gov/index.html [Google Scholar]
- F.E. Cellier, E. Kofman, Continuous System Simulation. en. (Springer, New York, NY, Mar. 2006) [Google Scholar]
- B. Cockburn, C.-W. Shu, “The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V: Multidimensional Systems”, J. Comput. Phys. 141, 199 (1998) [CrossRef] [MathSciNet] [Google Scholar]
- E. Kofman, S. Junco, “Quantized-state systems: a DEVS Approach for continuous system simulation”, Trans. Soc. Comput. Simul. Int. 18, 123 (2001) [Google Scholar]
- F. Salvat, J. Fernandez-Varea, J. Sempau, “PENELOPE-2008: A Code System for Monte Carlo Simulation of Electron and Photon Transport” (2009) [Google Scholar]
- D.E. Cullen, J.H. Hubbell, L. Kissel, EPDL97: The Evaluated Photon Data Library ’97 Version (1997), https://www-nds.iaea.org/epdl97 [Google Scholar]
- A. Sytov, V. Tikhomirov, L. Bandiera, “Simulation code for modeling of coherent effects of radiation generation in oriented crystals”, Phys. Rev. Accel. Beams 22, 064601 (2019) [Google Scholar]
- A. Sytov, L. Bandiera, K. Cho, et al., “Geant4 simulation model of electromagnetic processes in oriented crystals for accelerator physics”, J. Korean Phys. Soc. 83, 132 (2023) [Google Scholar]
- F. Nicolanti et al., “Geant4-DNA development for atmospheric applications: N2, O2 and CO2 models implementation”, Phys. Medica Eur. J. Med. Phys. 128, 104838 (2024) [Google Scholar]
- D. Brandt et al., “Semiconductor phonon and charge transport Monte Carlo simulation using Geant4” (2014), Arxiv eprint [arXiv: https://arxiv.org/abs/1403.4984] (physics.ins-det) [Google Scholar]
- M.H. Kelsey et al., “G4CMP: Condensed matter physics simulation using the Geant4 toolkit”, Nucl. Instrum. Methods Phys. Res. A 1055, 168473 (2023) [Google Scholar]
- S. Goudsmit, J.L. Saunderson, “Multiple scattering of electrons”, Phys. Rev. 57, 24 (1940) [CrossRef] [Google Scholar]
- M. Novak, “On the new and accurate (Goudsmit- Saunderson) model for describing e–/e+ multiple Coulomb scattering (Geant4 Technical Note)” (2024), Arxiv eprint [arXiv: https://arxiv.org/abs/2410.13361] (physics.comp-ph) [Google Scholar]
- S. Incerti, V. Ivanchenko, M. Novak, “Recent progress of Geant4 electromagnetic physics for calorimeter simulation”, J. Instrum. 13, C02054 (2018) [Google Scholar]
- D. P. Watts et al., “Photon quantum entanglement in the MeV regime and its application in PET imaging”, Nat. Commun. 12, 2646 (2021) [Google Scholar]
- P. Gros et al., “Performance measurement of HARPO: A time projection chamber as a gamma-ray telescope and polarimeter”, Astropart. Phys. 97, 10 (2018) [Google Scholar]
- I. Semeniouk, D. Bernard, “C++ implementation of Bethe-Heitler, 5D, polarized γ→e+e- pair conversion event generator”, Nucl. Instrum. Methods Phys. Res. A 936, 290 (2019) [Google Scholar]
- S. Incerti et al., “The geant4-DNA project”, Adv. Complex Syst. 01, 157 (2010) [Google Scholar]
- S. Incerti et al., “Comparison of GEANT4 very low energy cross section models with experimental data in water”, Med. Phys. 37, 4692 (2010) [CrossRef] [Google Scholar]
- M.A. Bernal et al., “Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit”, Phys. Med. 31, 861 (2015) [Google Scholar]
- S. Incerti et al., “Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project”, Med. Phys. 45, e722 (2018) [CrossRef] [Google Scholar]
- H.N. Tran et al., “Review of chemical models and applications in Geant4-DNA: Report from the ESA BioRad III Project”, Med. Phys. 51, 5873 (2024) [Google Scholar]
- W.-G. Shin et al., “A Geant4-DNA evaluation of radiation-induced DNA damage on a human fibroblast”, Cancers (Basel) 13, 4940 (2021) [Google Scholar]
- I. Kyriakou et al., “Review of the Geant4-DNA simulation toolkit for radiobiological applications at the cellular and DNA level”, Cancers (Basel) 14, 35 (2021) [Google Scholar]
- I. Plante, “A review of simulation codes and approaches for radiation chemistry”, Phys. Med. Biol. 66, 03TR02 (2021) [Google Scholar]
- N. Srimanobhas et al., “Full Simulation of CMS for Run-3 and Phase-2”, EPJ Web Conf. 295, 03017 (2024) [Google Scholar]
- E. Woodcock et al., Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. Tech. rep. ANL-7050. Argonne National Laboratory, 1965 [Google Scholar]
- V.V. Uzhinsky, “The Fritiof (FTF) Model in Geant4”, in International Conference on Calorimetry for the High Energy Frontier (2013), pp. 260 [Google Scholar]
- B. Andersson, G. Gustafson, B. Nilsson-Almqvist, “A model for low-pT hadronic reactions with generalizations to hadron-nucleus and nucleus- nucleus collisions”, Nucl. Phys. B. 281, 289 (1987) [Google Scholar]
- B. Nilsson-Almqvist, E. Stenlund, “Interactions between hadrons and nuclei: The Lund Monte Carlo – FRITIOF version 1.6 –”, Comput. Phys. Commun. 43, 387 (1987) [Google Scholar]
- B. Andersson, G. Gustafson, C. Peterson, “A statistical model for quark fragmentation into mesons with emphasis on vector meson contributions”, Nucl. Phys. B. 135, 273 (1978) [Google Scholar]
- A. Galoyan et al., “Towards model descriptions of the latest data by the NA61/SHINE collaboration on 40Ar + 45Sc and 7Be + 9Be interactions, Eur. Phys. J. C Part. Fields, 82, 2 (2022) [Google Scholar]
- V. Lugovoi, “Rotating string” (1998), ArXiv eprint [arXiv: https://arxiv.org/abs/hep-ph/9811486] (hep-ph) [Google Scholar]
- H.J. Schulze, J. Aichelin, “Fragmentation of color strings”, Phys. Rev. D Part. Fields 43, 2111 (1991) [Google Scholar]
- A. B. Kaidalov, “The quark-gluon structure of the pomeron and the rise of inclusive spectra at high energies”, Phys. Lett. B 116, 459 (1982) [Google Scholar]
- H. Fesefeld, Simulation of Hadronic Showers, Physics and Applications. Tech. rep. Technical Report PITHA 85-02. Aachen, Germany, 1985 [Google Scholar]
- P. Kaitaniemi et al., “INCL intra-nuclear cascade and ABLA DE-excitation models in Geant4”, Prog. Nucl. Sci. Technol. 2, 788 (2011) [Google Scholar]
- D. Mancusi et al., “Extension of the Liège intranuclear-cascade model to reactions induced by light nuclei”, Phys. Rev. C Nucl. Phys. 90, 5 (2014) [Google Scholar]
- L. Thulliez, C. Jouanne, E. Dumonteil, “Improvement of Geant4 Neutron-HP package: From methodology to evaluated nuclear data li- brary”, Nucl. Instrum. Methods Phys. Res. A 1027, 166187 (2022) [Google Scholar]
- M. Zmeškal, L. Thulliez, E. Dumonteil, “Improvement of Geant4 Neutron-HP package: Doppler broadening of the neutron elastic scattering kernel”, Ann. Nucl. Energy 192, 109949 (2023) [Google Scholar]
- M. Zmeškal et al., “Improvement of Geant4 Neutron-HP package: Unresolved resonance region description with probability tables”, Ann. Nucl. Energy 211, 110914 (2025) [Google Scholar]
- R.R. Coveyou, R.R. Bate, R.K. Osborn, “Effect of moderator temperature upon neutron flux in infinite, capturing medium”, J. Nucl. Energy 2.3, 153 (1956) [Google Scholar]
- B. Becker, R. Dagan, G. Lohnert, “Proof and implementation of the stochastic formula for ideal gas, energy dependent scattering kernel”, Ann. Nucl. Energy 36, 470 (2009) [CrossRef] [Google Scholar]
- A. Zoia et al., “Doppler broadening of neutron elastic scattering kernel in Tripoli-4@”, Ann. Nucl. Energy 54, 218 (2013) [CrossRef] [Google Scholar]
- E. Brun et al., “Tripoli-4@”, Ann. Nucl. Energy 82, 151 (2015) [CrossRef] [Google Scholar]
- Geant4 Physics List Guide. The Geant4 Collaboration (2024) [Google Scholar]
- G. Inc. GitLab, 2024, url: https://about.gitlab.com/ [Google Scholar]
- A. Dotti et al., “Software aspects of the Geant4 validation repository”, J. Phys. Conf. Ser. 898, 042030 (2017) [Google Scholar]
- G. Collaboration, GENIE Event Generator & Global Analysis of Neutrino Scattering Data, (2024) url: https://hep.ph.liv.ac.uk/?costasa/genie/index.html [Google Scholar]
- A. Collaboration, ATLAS Software and Computing HL-LHC Roadmap (2022), url: https://cds.cern.ch/record/2802918/files/LHCC-G-182.pdf [Google Scholar]
- C. Collaboration, CMS Phase-2 Computing Model: Update Document (2022), url: https://cds.cern.ch/ record/2815292/files/NOTE2022008.pdf [Google Scholar]
- L. Collaboration, LHCb CPU Usage Forecast (2019), url: https://lhcbproject.web.cern.ch/lhcbproject/Publications/f/p/LHCb-FIGURE-2019-018.html [Google Scholar]
- G. Grindhammer, S. Peters, “The parameterized simulation of electromagnetic showers in homogeneous and sampling calorimeters” (2000), Arxiv eprint [arXiv: https://arxiv.org/abs/hep-ex/0001020] (hep-ex) [Google Scholar]
- M.F. Giannelli et al., Fast Calorimeter Simulation Challenge 2022 (2022), url: https://calochallenge.github.io/homepage/ [Google Scholar]
- ONNX Runtime, 2018, url: https://github.com/microsoft/onnxruntime [Google Scholar]
- lwtnn. 2024, url: https://github.com/lwtnn/lwtnn/ [Google Scholar]
- LibTorch. 2024, url: https://pytorch.org/cppdocs/frontend.html [Google Scholar]
- Courtesy of Anna Zaborowska and Dalila Salamani. 2024 [Google Scholar]
- Carlo Mancini Terracciano team, Department of Physics, Sapienza University of Rome, Italy. INFN, Section of Rome, Italy. 2024 [Google Scholar]
- M. Novak et al., The G4HepEm R &D Project, 2020, url: https://github.com/mnovak42/g4hepem [Google Scholar]
- J. Hahnfeld, B. Morgan, M. Novak, G4HepEm and Specialized Stepping/Tracking in Geant4. Report during 26th Geant4 Collaboration Meeting, 2024 [Google Scholar]
- Courtesy of M. Novak, J. Hahnfeld and AdePT Team. 2024 [Google Scholar]
- See for example the MPEXS project and references therein : 2024, https://wiki.kek.jp/display/mpexs/MPEXS+Project [Google Scholar]
- A. Gheata et al., AdePT – Accelerated demon- strator of electromagnetic Particle Transport, 2024, https://github.com/apt-sim/AdePT, url: https://geant4.web.cern.ch/collaboration/working groups/taskforcerd/g4rd14. [Google Scholar]
- S.R. Johnson et al., Celeritas, https://celeritas-project.github.io/celeritas/ and references therein, 2024, url: https://geant4.web.cern.ch/collaboration/workinggroups/taskforcerd/g4rd12 [Google Scholar]
- S.R. Johnson, R. Lefebvre, K. Bekar. Orange: Oak ridge advanced nested geometry engine. Technical Report Technical Report ORNL/TM-2023/3190, Oak Ridge National Laboratory, 2023 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
