| Issue |
EPJ Nuclear Sci. Technol.
Volume 11, 2025
Euratom Research and Training in 2025: ‘Challenges, achievements and future perspectives’, edited by Roger Garbil, Seif Ben Hadj Hassine, Patrick Blaise, and Christophe Girold
|
|
|---|---|---|
| Article Number | 68 | |
| Number of page(s) | 8 | |
| DOI | https://doi.org/10.1051/epjn/2025067 | |
| Published online | 28 October 2025 | |
- N.R. Brown, A.T. Nelson, K.A. Terrani, Accident-tolerant fuel, in Comprehensive Nuclear Materials: Second Edition (Elsevier, 2020), pp. 684–706, https://doi.org/10.1016/B978-0-12-803581-8.11611-X [Google Scholar]
- K.A. Terrani, Accident Tolerant Fuel Cladding Development: Promise, Status, and Challenges (Elsevier B.V., 2018), https://doi.org/10.1016/j.jnucmat.2017.12.043 [Google Scholar]
- K.A.L. Gamble, J.D. Hales, T. Barani, D. Pizzocri, G. Pastore, Behavior of U3Si2 Fuel and FeCrAl Cladding under Normal Operating and Accident Reactor Conditions (Idaho National Lab.(INL), Idaho Falls, ID (United States), 2016) [Google Scholar]
- W. Wang, G. Zhang, C. Wang, T. Wang, Y. Zhang, T. Xin, Construction of Cr coatings with different columnar structure on Zircaloy-4 alloys to optimize the high-temperature steam oxidation behavior for accident tolerant fuel claddings, J. Alloys Compd. 946, 169385 (2023), https://doi.org/10.1016/j.jallcom.2023.169385 [Google Scholar]
- K.A. Alamri, M.M. Alqahtani, A.S. Alomari, A.I. Almarshad, Neutronic analysis of accident-tolerant cladding materials in 3D full core BEAVRS PWR benchmark using OpenMC code, Int. J. Energy Res. 2024, 8811265 (2024) [Google Scholar]
- N.M. George, K. Terrani, J. Powers, A. Worrall, I. Maldonado, Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors, Ann. Nucl. Energy 75, 703 (2015), https://doi.org/10.1016/j.anucene.2014.09.005 [Google Scholar]
- R.B. Rebak, Accident-Tolerant Materials for Light Water Reactor Fuels (Elsevier, 2020) [Google Scholar]
- K. Pasamehmetoglu et al., State-of-the-Art Report on Light Water Reactor Accident-Tolerant Fuels (Organisation for Economic Co-Operation and Development, 2018) [Google Scholar]
- M. Khatib-Rahbar, A. Krall, Z. Yuan, M. Zavisca, Review of Accident Tolerant Fuel Concepts with Implications to Severe Accident Progression and Radiological Releases, no. NUREG/CR-7282, Oct. 2020, Available: www.nrc.gov/reading-rm.html [Google Scholar]
- D. Mars, D. Gans, in Spectral Shift Control Reactor Design and Economic Study (Office of Technical Services, 1961), Vol. 1241 [Google Scholar]
- Y. Ronen, Y. Fahima, Combination of two spectral shift control methods for pressurized water reactors with improved power utilization, Nucl. Technol. 67, 46 (1984), https://doi.org/10.13182/NT84-A33528 [Google Scholar]
- V. Mehta, D. Kotlyar, Core analysis of spectral shift operated SmAHTR, Ann. Nucl. Energy 123, 46 (2019), https://doi.org/10.1016/j.anucene.2018.09.013 [Google Scholar]
- T. Elzayat, Y.B. Chertkov, O. Ashraf, Neutronic characteristics of the VVER-1000 fuel assembly with mechanical spectral shift regulation, Nucl. Eng. Des. 423, 113202 (2024), https://doi.org/10.1016/j.nucengdes.2024.113202 [Google Scholar]
- O. Ashraf, A.H. El-Kholy, T. Elzayat, A.M. Abdalla, A.H. Ashry, Neutronic evaluation of VVER fuel assembly with chemical spectral shift regulation, Nucl. Energy Technol. 10, 153 (2024), https://doi.org/10.3897/nucet.10.125815 [Google Scholar]
- S.B. Alam, C.S. Goodwin, G.T. Parks, Assembly-level analyses of accident-tolerant cladding concepts for a long-life civil marine SMR core using micro-heterogeneous duplex fuel, Prog. Nucl. Energy 111, 24 (2019) [Google Scholar]
- S.E. Alam Prianka, M.M. Haque Prodhan, Evaluation of neutronic characteristics of accident tolerant fuel concepts in SMART reactor fuel assemblies using DRAGON, Nucl. Eng. Des. 421, 113100 (2024), https://doi.org/10.1016/j.nucengdes.2024.113100 [Google Scholar]
- R.B. Rebak, Chapter 5 – FeCrAl–iron–chromium–aluminum monolithic alloys, in Accident Tolerant Materials for Light Water Reactor Fuels, edited by R.B. Rebak (Elsevier, 2020), pp. 83–141. https://doi.org/10.1016/B978-0-12-817503-3.00005-5 [Google Scholar]
- P. Teplov, A. Chibiniaev, E. Bobrov, P. Alekseev, The main characteristics of the evolution project VVER-S with spectrum shift regulation, 2015 [Google Scholar]
- B.A. Pint, K.A. Terrani, M.P. Brady, T. Cheng, J.R. Keiser, High temperature oxidation of fuel cladding candidate materials in steam–hydrogen environments, J. Nucl. Mater. 440, 420 (2013), https://doi.org/10.1016/j.jnucmat.2013.05.047 [Google Scholar]
- S.J. Zinkle, L.L. Snead, Designing radiation resistance in materials for fusion energy, Annu. Rev. Mater. Res. 44, 241 (2014), https://doi.org/10.1146/annurev-matsci-070813-113627 [Google Scholar]
- R. Oelrich, P. Xu, E. Lahoda, C. Deck, Update on Westinghouse EnCore®accident tolerant fuel program, in AISTech 2018 Iron and Steel Technology Conference and Exposition (Association for Iron and Steel Technology, AISTECH, 2018), pp. 1311–1313 [Google Scholar]
- A.T. Nelson, A. Migdisov, E.S. Wood, C.J. Grote, U3Si2 behavior in H2O environments: Part II, pressurized water with controlled redox chemistry, J. Nucl. Mater. 500, 81 (2018), https://doi.org/10.1016/j.jnucmat.2017.12.026 [Google Scholar]
- M. Jolkkonen, M. Pertti, J. Kyle, J. Wallenius, Uranium nitride fuels in superheated steam, J. Nucl. Sci. Technol. 54, 513 (2017), https://doi.org/10.1080/00223131.2017.1291372 [Google Scholar]
- N. Belousov, S. Bichkov, Y. Marchuk, A. Prianichnikov, V. Savander, I. Fyodorov, The code GETERA for cell and polycell calculations. Models and capabilities, 1992 [Google Scholar]
- G.N. Manturov, M.N. Nikolaev, A.M. Tsibulya, BNAB-93 group data library Part 1: Nuclear data for the calculation of neutron and photon radiation fields, 1997 [Google Scholar]
- T.M. Abuqudaira, Y.V. Stogov, Neutronic calculations for the VVER-1000 LEU and MOX assembly computational benchmark using the GETERA code, J. Phys. Conf. Ser. 1133, 012018 (2018), https://doi.org/10.1088/1742-6596/1133/1/012018 [Google Scholar]
- D. Tuymurodov, A. Tuymuradov, S. Palvanov, S. Ashurov, V. Kudratov, Comparative analysis of accident tolerant fuels with spectrum shift regulation in VVER-S reactor, J. Phys. Conf. Ser. 2984, 012010 (2025), https://doi.org/10.1088/1742-6596/2984/1/012010 [Google Scholar]
- G.J. Youinou, R.S. Sen, Impact of accident-tolerant fuels and claddings on the overall fuel cycle: A preliminary systems analysis, Nucl. Technol. 188, 123 (2014), https://doi.org/10.13182/NT14-22 [Google Scholar]
- D.A. Brown et al., ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148, 1 (2018), https://doi.org/10.1016/j.nds.2018.02.001 [CrossRef] [Google Scholar]
- V. Slugen et al., VVER long-term operation – A review based on the material studies results from past and ongoing EU-supported research projects, Nucl. Eng. Des. 435, 113949 (2025), https://doi.org/10.1016/j.nucengdes.2025.113949 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
