Issue
EPJ Nuclear Sci. Technol.
Volume 9, 2023
Templates of Expected Measurement Uncertainties: a CSEWG Effort
Article Number 35
Number of page(s) 10
DOI https://doi.org/10.1051/epjn/2023014
Published online 10 November 2023
  1. Experimental Nuclear Reaction Data Library (EXFOR), IAEA Nuclear Data Section, See https://www-nds.iaea.org/exfor (accessed 2016-11-8), or for the NNDC at Brookhaven National Laboratory, the mirror site is http://www.nndc.bnl.gov/exfor (accessed 2016-11-8) [Google Scholar]
  2. N. Otuka et al., Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): International collaboration between nuclear reaction data centres (NRDC), Nucl. Data Sheets 120, 272 (2014) [CrossRef] [Google Scholar]
  3. V.V. Zerkin, B. Pritychenko, The Experimental Nuclear Reaction Data (EXFOR): Extended Computer Database and Web Retrieval System, Nucl. Instrum. Meth. Phys. Res. Sec. A 888, 31 (2018) [CrossRef] [Google Scholar]
  4. D. Neudecker et al., Applying a template of expected uncertainties to updating 239Pu(n, f) cross-section covariances in the neutron data standards database, Nucl. Data Sheets 163, 228 (2020) [CrossRef] [Google Scholar]
  5. D. Neudecker et al., The need for precise and well-documented experimental data on prompt fission neutron spectra from neutron-induced fission of 239Pu, Nucl. Data Sheets 131, 289 (2016) [CrossRef] [Google Scholar]
  6. A.M. Lewis et al., Templates of expected measurement uncertainties for total cross section observables, EPJ Nuclear Sci. Technol. 9, 34 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  7. A.M. Lewis et al., Templates of expected measurement uncertainties for capture and charged-particle production cross section observables, EPJ Nuclear Sci. Technol. 9, 33 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  8. A. Lewis, Uncertainty analysis procedures for neutron-induced cross section measurements and evaluations, PhD thesis. Department of Nucl. Engineering, University of California, Berkeley, USA, 2020 [Google Scholar]
  9. J.R. Vanhoy et al., Templates of expected measurement uncertainties for (n, xn) cross sections, EPJ Nuclear Sci. Technol. 9, 31 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  10. D. Neudecker et al., Templates of expected measurement uncertainties for prompt fission neutron spectra, EPJ Nuclear Sci. Technol. 9, 32 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  11. D. Neudecker et al., Templates of expected measurement uncertainties for average prompt and total fission neutron multiplicities, EPJ Nuclear Sci. Technol. 9, 30 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
  12. E.F. Matthews et al., Templates of expected measurement uncertainties for fission yields, EPJ Nuclear Sci. Technol. 9, 29 (2023) [Google Scholar]
  13. E.F. Matthews, Advancements in the nuclear data of fission yields, PhD thesis, Department of Nucl. Engineering, University of California, Berkeley, USA, 2021. [Google Scholar]
  14. J. Bess, editor, International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP), Organization for Economic Co-operation and Development-Nuclear Energy Agency Report NEA/NSC/DOC(95)03, 2019. [Google Scholar]
  15. in [14] V.F. Dean, editor, ICSBEP Guide to the Expression of Uncertainties, Organization for Economic Co-operation and Development-Nuclear Energy Agency Report NEA/NSC/DOC(95)03, 2019. [Google Scholar]
  16. A.D. Carlson et al., Evaluation of the neutron data standards, Nucl. Data Sheets 148, 143 (2018) [Google Scholar]
  17. P. Schillebeeckx et al., Determination of resonance parameters and their covariances from neutron induced reaction cross section data, Nucl. Data Sheets 113, 3054 (2012) [CrossRef] [Google Scholar]
  18. F. Gunsing, P. Schillebeeckx, V. Semkova, IAEA Report INDC(NDS)-0647, 2013. [Google Scholar]
  19. P. Helgesson, H. Sjöstrand, D. Rochman, Uncertainty-driven nuclear data evaluation including thermal (n,α) applied to 59Ni, Nucl. Data Sheets 145, 1 (2017) [CrossRef] [Google Scholar]
  20. D. Neudecker et al., Template for estimating uncertainties of measured neutron-induced fission cross-sections, EPJ Nuclear Sci. Technol. 4, 21 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  21. D.L. Smith, N. Otuka, Experimental nuclear reaction data uncertainties: basic concepts and documentation, Nucl. Data Sheets 113, 3006 (2012) [CrossRef] [Google Scholar]
  22. D.L. Smith, Probability, Statistics and Data Uncertainties in Nuclear Science and Technology (American Nucl. Society, LaGrange Park, IL, 1991) [Google Scholar]
  23. N. Drosg, Dealing with Uncertainties. A Guide to Error Analysis, (Springer, Heidelberg-New York, Second Enlarged Edition, 2009) [CrossRef] [Google Scholar]
  24. A.E. Lovell, D. Neudecker, P. Talou, Release of Evaluated 235U(n, f) Average Prompt Neutron Multiplicities Including the CGMF Model, Los Alamos National Laboratory Report LA-UR-22-23475, 2022. [Google Scholar]
  25. Ju.A. Bljumkina, I.I. Bondarenko, V.F. Kuznetsov, V.G. Nesterov, V.N. Okolovitch, G.N. Smirenkin, L.N. Usachev, Channel effects in the energy dependence of the number of prompt neutrons and the kinetic energy of fragments in the fission of U235 and U233 by neutrons, Nucl. Phys. 52, 648 (1964) [CrossRef] [Google Scholar]
  26. D.W. Colvin, M.G. Sowerby, Boron pile nu-bar measurements, Proc. Nucl. Data Reactors Conf., Paris 1966 1, 307 (1966). [Google Scholar]
  27. H. Conde, Average number of neutrons from the fission of U-235, Arkiv foer Fysik 29, 293 (1965) [Google Scholar]
  28. B.C. Diven, H.C. Martin, R.F. Taschek, Multiplicities of fission neutrons, Phys. Rev. 101, 1012 (1956) [CrossRef] [Google Scholar]
  29. B.C. Diven, J.C. Hopkins, Numbers of prompt neutrons per fission for U233, U235, Pu239 and Cf252, Proc. Reactor Physics Sem., Vienna 1961 1, 149 (1961). [Google Scholar]
  30. D.S. Mather, M.H. Mctaggart, A. Moat, Revision of the Harwell 240Pu source strength and nu for 235U and 252Cf, J. Nucl. Energy A&B 20, 549 (1966) [Google Scholar]
  31. M. Soleihac, J. Frehaut, J. Gauriau, Energy Dependence of νp for Neutron-induced Fission of 235U, 238U and 239Pu from 1.3 to 15 MeV, J. Nucl Energy 23, 257 (1969) [CrossRef] [Google Scholar]
  32. J. Frehaut, G. Mosinski, M. Soleihac, Recent Results in # Measurements between 1.5 and 15 MeV, Topical Conference on # The Average Number of Neutrons Emitted in Fission, France, 1972, Report EANDC(E)-15 “U”, 1973. [Google Scholar]
  33. J. Frehaut, A. Bertin, R. Bois, Mesure de ν̅p et E-bar γ pour la fission de 232Th, 235U et 237Np induite par des neutrond d’energie comprise entre 1 et 15 MeV, Centre d’Etudes Nucleaires 2196 (1981). [Google Scholar]
  34. R. Gwin, R.R. Spencer, R.W. Ingle, Measurements of the energy dependence of prompt neutron emission from 233U, 235U, and 239Pu for En = 0.0005 to 10 MeV relative to emission from spontaneous fission of 252Cf, Nucl. Sci. Eng. 94, 365 (1986) [CrossRef] [Google Scholar]
  35. R. Gwin, R.R. Spencer, R.W. Ingle, Measurements of the energy dependence of prompt neutron neutron emission from 233U, 235U, 239Pu, and 241Pu for En 0.0005 to 10 eV relative to emission from spontaneous fission of 252Cf, Nucl. Sci. Eng. 87, 381 (1984) [CrossRef] [Google Scholar]
  36. R. Gwin et al., Measurements of the Average Number of Prompt Neutrons Emitted Per Fission of 239Pu and 235U (Oak Ridge National Laboratory ORNL/TM-6246, 1978). [Google Scholar]
  37. J.C. Hopkins, B.C. Diven, Prompt neutrons from fission, Nucl. Phys. 48, 433 (1963) [CrossRef] [Google Scholar]
  38. R.E. Howe, T.W. Phillips, Fission nu-bar measurements, Brookhaven Natl. Lab. Rep. 21501, 66 (1976) [Google Scholar]
  39. F. Kaeppeler, R.E. Bandl, The average number of prompt neutrons from neutron induced fission of U-235 between 0.2 and 1.4 MeV, Proc. Conf. Nucl. Cross-Sect. Techn., Washington 1975 2, 549 (1975). [Google Scholar]
  40. J.W. Meadows, J.F. Whalen, Energy dependence of prompt ν̅-for neutron-induced fission of U235, Phys. Rev. 126, 197 (1962) [CrossRef] [Google Scholar]
  41. J.W. Meadows, Measurement of ν̅p for 235U, U.S. Rep. EANDC 70, 9 (1964). [Google Scholar]
  42. J.W. Meadows, J.F. Whalen, Energy dependence ν̅p for neutron-induced fission of U235 below 1.0 MeV, J. Nucl Energy 21, 157 (1967) [CrossRef] [Google Scholar]
  43. L.I. Prokhorova et al., Yield of prompt neutrons ν̅tot in the fission of U235 by neutrons with energies up to 1.5 MeV, Atomnaya Énergiya 30, 250 (1971) [Google Scholar]
  44. L.I. Prokhorova, G.N. Smirenkin, Average number of prompt neutrons from U235 and Th232 fission induced by neutrons having energies up to 3.3 MeV, Yadernaya Fizika 7 961 (1968) [Google Scholar]
  45. A.N. Protopopov, M.V. Blinov, Mean number of neutrons emitted in U235 fission induced by 14.8-MeV neutrons, Atomnaya Energiya 4 (1958) [Google Scholar]
  46. M.V. Savin et al., The Average Number of Prompt Neutrons in Fast Neutron Induced Fission of U-235, Pu-239 and Pu-240, IAEA Report IAEA-CN-26/40 (1970) [Google Scholar]
  47. M.V. Savin, Y.A. Khokhlov, A.E. Savelev, I.N. Paramonova, Energy dependence of ν̅ in the fission of U235 by fast neutrons, Proc. Third All Union Conf. Neutron Phys. Kiev, 9–13 Jun 1975 5, 186 (1975). [Google Scholar]
  48. M.V. Savin, Ju.A. Khokhlov, V.N. Ludin, Average number of prompt neutrons at the 235U fission by neutrons in the energy interval MeV, Proc. Sec. Conf. Neutron Phys. Kiev 1973 4, 63 (1973). [Google Scholar]
  49. G.N. Smirenkin et al., Mean number of prompt neutrons in the fission of U233, U235, Pu239 by 4 and 15 MeV neutrons, Sov. At. Energy 4, 253 (1958) [CrossRef] [Google Scholar]
  50. M. Soleihac et al., Average number of prompt neutrons and relative fission cross-sections of U-235 and Pu-239 in the 0.3 to 1.4 MeV Range, Proc. Conf. Nucl. Data Reactors, Helsinki, 2, 145 (1970) [Google Scholar]
  51. J.W. Boldeman, J. Fréhaut, R.L. Walsh, A reconciliation of measurements of ν̅p for neutron-induced fission of Uranium-235, Nucl. Sci. Eng. 63 430 (1977) [CrossRef] [Google Scholar]
  52. R.L. Walsh, J.W. Boldeman, The energy dependence ν̅p for 233U, 235U and 239Pu below 5.0 MeV, J. Nucl Energy 25 321 (1971) [CrossRef] [Google Scholar]
  53. D. Neudecker, ARIADNE–A program estimating covariances in detail for neutron experiments, EPJ Nuclear Sci. Technol. 4, 34 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  54. M.W. Herman (co-ordinator), Covariance Data in the Fast Neutron Region, Organization for Economic Co-operation and Development-Nuclear Energy Agency NEA/NSC/WPEC/DOC(2010), 427 (2011) [Google Scholar]
  55. D.A. Brown et al., ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148, 1 (2018) [CrossRef] [Google Scholar]
  56. W. Haeck et al., ENDFtk, https://github.com/njoy/ENDFtk (accessed 2023-3-31). [Google Scholar]
  57. R.E. MacFarlane et al., The NJOY Nuclear Data Processing System, Version 2016, Los Alamos National Laboratory Report LA-UR-17-20093, 2017 [CrossRef] [Google Scholar]
  58. C. Werner et al., MCNP Users Manual – Code Version 6.2, Los Alamos National Laboratory Report LA-UR-17-29981, 2017 [Google Scholar]
  59. SubGroup 50 (Co-ordinators: A. Lewis, D. Neudecker, Monitor: A. Koning), Developing an Automatically Readable, Comprehensive and Curated Experimental Reaction Database, https://www.oecd-nea.org/download/wpec/sg50/ (accessed 2023-3-31) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.