Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 9, 2023
Article Number 14
Number of page(s) 24
DOI https://doi.org/10.1051/epjn/2022055
Published online 27 February 2023
  1. M. Besnard, M. Buser, I. Fairlie, A.M. McKerron, Y. Marignac, E. Matyas, E. Sequens, J. Swahn, B. Wealer, The world nuclear waste report 2019, Focus Europe, Technical report, World Nuclear Waste Report, 2019, Available from: https://worldnuclearwastereport.org [Google Scholar]
  2. J. Carter, Spent nuclear fuel and high-level radioactive waste inventory report, 2018, Available from: https://www.osti.gov/biblio/1462174 [Google Scholar]
  3. V. Solans, D. Rochman, H. Ferroukhi, A. Vasiliev, A. Pautz, Loading optimization for swiss used nuclear fuel assemblies into final disposal canisters, Nucl. Eng. Des. 370, 110897 (2020) [CrossRef] [Google Scholar]
  4. J. Rutqvist, Thermal management associated with geologic disposal of large spent nuclear fuel canisters in tunnels with thermally engineered backfill, Tunnelling Underground Space Technol. 102, 103454 (2020) [CrossRef] [Google Scholar]
  5. M. Brandauer, L. Smadja, editors, Multifactor Optimisation of Predisposal Management of Radioactive Waste, Proceedings of the NEA Joint Workshop, Vol. NEA/RWM/R(2020)3 of Radioactive Waste Management Committee (Nuclear Energy Agency, Paris, France, 2018) [Google Scholar]
  6. S. Caruso, E. Vlassopoulos, R. Dagan, L. Fiorito, M. Herm, P. Jansson, M. Kromar, M. Kiraly, J. Leppanen, F.F. Marquez, V. Metz, D. Papaioannou, L.E. Herranz, D. Rochman, P. Schillebeeckx, M. Seidl, A.H. Solis, A. Stankovskiy, F. Alvarez Velarde, M. Verwrft, M. Nieves Rodriguez Villagra, U. Zencker, G. Zerovnik, European joint programme on radioactive waste management, state of the art report, Technical Report, EURAD WP8, 2022, Available from: https://www.ejp-eurad.eu/publications/eurad-deliverable-81-state-art-report [Google Scholar]
  7. A. Tobias, Decay heat, Prog. Nucl. Energy 5, 1 (1980) [CrossRef] [Google Scholar]
  8. F. Michel-Sendis, et al., SFCOMPO-2.0: an OECD NEA database of spent nuclear fuel isotopic assays, reactor design specifications, and operating data, Ann. Nucl. Energy 110, 779 (2017) [CrossRef] [Google Scholar]
  9. D. Rochman, A. Vasiliev, H. Ferroukhi, M. Pecchia, Consistent criticality and radiation studies of Swiss spent nuclear fuel: the CS2M approach, J. Hazard. Mater. 357, 384 (2018) [Google Scholar]
  10. Evaluation of measurement data – Guide to the expression of uncertainty in measurement, Technical Report JCGM 100:2008, Bureau International des Poids et Mesures, Geneva, Switzerland, 2008, Available from: https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf [Google Scholar]
  11. G. Ilas, I. Gauld, P. Ortego, S. Tsuda, SFCOMPO database of spent nuclear fuel assay data – the next frontier, EPJ Web Conf. 247,10019 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  12. Spent nuclear fuel assay data for isotopic validation, state-of-the-art Report, Technical Report NEA/NSC/WPNCS/DOC(2011)5, Nuclear Science Committee, Working Party on Nuclear Criticality Safety, Expert Group on Assay Data of Spent Nuclear Fuel, 2011. Available from: https://www.oecd-nea.org/jcms/pl_23061/spent-nuclear-fuel-assay-data-for-isotopic-validation-state-of-the-art-report [Google Scholar]
  13. H. Akkurt, H. Liljenfeldt, G. Ilas, S. Baker, Phenomena Identification and Ranking Table (PIRT) for decay heat, Technical Report 3002018440, EPRI, Palo Alto, USA (2020) [Google Scholar]
  14. D. Čalič, M. Kromar, Spent fuel characterization analysis using various nuclear data libraries, Nucl. Eng. Technol. 54, 3260 (2022) [CrossRef] [Google Scholar]
  15. V. Merljak, M. Kromar, Comparing different approaches to calculating decay heat power of a spent fuel dry storage cask for Krško NPP, in International Conference on Nuclear Energy for New Europe ,(Bled, Slovenia, 2021) [Google Scholar]
  16. M.A. McKinnon, J.W. Doman, R.J. Guenther, J.M. Creer, C.E. King, Cask handling experience and decay heat, heat transfer, and shielding data, Technical Report PNL-5777 Vol. 1, Pacific Northwest Laboratory, Richland, Washington, USA, 1986 [Google Scholar]
  17. L.E. Wiles, N.J. Lombardo, C.M. Heeb, U.P. Jenquin, T.E. Michener, C.L. Wheeler, J.M. Creer, R.A. McCann, Pre- and post-test decay heat, heat transfer, and shielding analysis, Technical Report PNL-5777 Vol. 2, Pacific Northwest Laboratory, Richland, Washington, USA, 1986 [Google Scholar]
  18. F. Sturek, L. Agrenius, Measurements of decay heat in spent nuclear fuel at the Swedish interim storage facility, Clab, Technical Report R-05-62, Svensk Kärnbränslehantering AB (SKB), Sweden, 2006 [Google Scholar]
  19. F. Schmittroth, ORIGEN2 calculations of PWR spent fuel decay heat compared with calorimeter data, Technical Report HEDL-TME 83-32 (UC-85), Hanford Engineering Development Laboratory, USA, 1984 [Google Scholar]
  20. D. Rochman, A. Vasiliev, H. Ferroukhi, M. Seidl, J. Basualdo, Improvement of pie analysis with a full core simulation: the U1 case, Ann. Nucl. Energy 148, 107706 (2020) [CrossRef] [Google Scholar]
  21. D. Rochman, M. Hursin, A. Vasiliev, H. Ferroukhi, Impact of H in H2O thermal scattering data on depletion calculation: k, nuclide inventory and decay heat, EPJ Nuclear Sci. Technol. 7, 24 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  22. D. Rochman, A. Vasiliev, H. Ferroukhi, M. Hursin, Analysis for the ARIANE GU1 sample: nuclide inventory and decay heat, Ann. Nucl. Energy 160, 108359 (2021) [CrossRef] [Google Scholar]
  23. D. Rochman, A. Vasiliev, H. Ferroukhi, M. Hursin, R. Ichou, J. Taforeau, T. Simeonov, Analysis for the ARIANE GU3 sample: nuclide inventory and decay heat, EPJ Nuclear Sci. Technol. 7, 14 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  24. S. Häkkinen, Gundremmingen-A assembly B23 sample I2680 depletion calculation with Serpent 2, Technical Report VTT-R-00631-21, VTT Technical Research Centre of Finland, 2021, Available from: https://cris.vtt.fi/en/publications/gundremmingen-a-assembly-b23-sample-i2680-depletion-calculation-w [Google Scholar]
  25. S. Häkkinen, Sensitivity and uncertainty analysis of Gundremmingen-A assembly B23 sample I2680 depletion calculation with Serpent 2, Technical Report VTT-R-00632-21, VTT Technical Research Centre of Finland, 2021, Available from: https://cris.vtt.fi/en/publications/sensitivity-and-uncertainty-analysis-of-gundremmingen-a-assembly [Google Scholar]
  26. M. Kromar, B. Kurinčič, Determination of the NPP Krško spent fuel decay heat, in Thermophysics 2017, Vol. 1866 of AIP Conference Proceedings, edited by AIP Publishing (2017) p. 050005, Available from: https://aip.scitation.org/doi/abs/10.1063/1.4994529 [Google Scholar]
  27. M. Kromar, D. Čalič, Impact of different fuel temperature models on the nuclear core design predictions of the NPP Krško, in International Conference on Nuclear Energy for New Europe (Bled, Slovenia, 2021), Available from: https://www.djs.si/nene2021/proceedings/pdf/NENE2021_322.pdf [Google Scholar]
  28. A. Hernandez-Solis, K. Ambrozic, D. Čalič, L. Fiorito, B. Kos, M. Kromar, P. Schillebeeckx, A. Stankovskiy, G. Žerovnik, Boundary condition modeling effect on the spent fuel characterization and final decay heat prediction from a PWR assembly, EPJ Web Conf. 247, 12008 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  29. L. Fiorito, et al., On the use of criticality and depletion benchmarks for verification of nuclear data, Ann. Nucl. Energy 161, 108415 (2021) [CrossRef] [Google Scholar]
  30. A. Shama, D. Rochman, S. Caruso, A. Pautz, Validation of spent nuclear fuel decay heat calculations using polaris, ORIGEN and CASMO5, Ann. Nucl. Energy 165, 108758 (2022) [CrossRef] [Google Scholar]
  31. F. Álvarez-Velarde, S. Panizo-Prieto, Contribution of CIEMAT to EURAD WP8 Task 2.1 on uncertainty propagation in depletion analyses, Technical Report DFN/IN-01/II-21, CIEMAT, 2022 [Google Scholar]
  32. G. Zerovnik, K. Ambrozic, D. Calic, L. Fiorito, K. Govers, A. Hernandez-Solis, B. Kos, M. Kromar, P. Schillebeeckx, A. Stankovskiy, Characterization of Spent PWR fuel for decay heat, neutron and gamma-ray emission: code comparison, in International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, (M&C 2019), edited by American Nuclear Society, Portland, USA, 2019, Available from: https://www.showsbee.com/fairs/52748-ANS-MC-2019.html [Google Scholar]
  33. D. Rochman, A. Vasiliev, H. Ferroukhi, A. Munoz, M. Antolin-Vazquez, M. Torres-Berrios, C. Sanchez-Casado, T. Simeonov, A. Shama, Analysis of ENRESA BWR samples: nuclide inventory and decay heat, EPJ Nuclear Sci. Technol. 8, 9 (2022) [CrossRef] [EDP Sciences] [Google Scholar]
  34. J.F. Martin, T. Ivanova, A. Vasiliev, D. Rochman, J. Bess, F. Brown, C. Carmouze, I. Duhamel, R. Ichou, S. Gan, A.R. Wilson, A. Hoefer, G. Ilas, W. Wieselquist, G. McKenzie, C. Percher, M. Stuke, A. Zioa, The OECD NEA working party on nuclear criticality safety recent outcome, work in progress and outlook, in Nuclear Criticality Safety Division Topical Meeting (NCSD 2022), edited by American Nuclear Society (Anaheim, USA, 2022), Available from: https://www.ans.org/meetings/ncsd2022/ [Google Scholar]
  35. A. Shama, D. Rochman, S. Pudollek, S. Caruso, A. Pautz, Uncertainty analyses of spent nuclear fuel decay heat calculations using scale modules, Nucl. Eng. Technol. 53, 2816 (2021) [CrossRef] [Google Scholar]
  36. D. Rochman, A. Vasiliev, A. Dokhane, H. Ferroukhi, Uncertainties for Swiss LWR spent nuclear fuels due to nuclear data, EPJ Nuclear Sci. Technol. 4, 6 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  37. D. Rochman, A. Vasiliev, A. Dokhane, H. Ferroukhi, M. Hursin, Nuclear data uncertainties for Swiss BWR spent nuclear fuel characteristics, Eur. Phys. J. Plus 135, 233 (2020) [CrossRef] [Google Scholar]
  38. J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82, 142 (2015) [CrossRef] [Google Scholar]
  39. M. Pusa, J. Leppänen, Computing the matrix exponential in burnup calculations, Nucl. Sci. Eng. 164, 140 (2010) [CrossRef] [Google Scholar]
  40. F. Alvarez-Velarde, E.M. González-Romero, I.M. Rodrguez, Validation of the burn-up code EVOLCODE 2.0 with PWR experimental data and with a sensitivity/uncertainty analysis, Ann. Nucl. Energy 73, 175 (2014) [CrossRef] [Google Scholar]
  41. N. Garca-Herranz, O. Cabellos, J. Sanz, J. Juan, J.C. Kuijper, Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations, Ann. Nucl. Energy 35, 714 (2008) [CrossRef] [Google Scholar]
  42. A.J.M. Plompen, O. Cabellos, C. De Saint Jean, M. Fleming, A. Algora, M. Angelone, P. Archier, E. Bauge, O. Bersillon, A. Blokhin, F. Cantargi, A. Chebboubi, C. Diez, H. Duarte, E. Dupont, J. Dyrda, B. Erasmus, L. Fiorito, U. Fischer, D. Flammini, D. Foligno, M.R. Gilbert, J.R. Granada, W. Haeck, F.J. Hambsch, P. Helgesson, S. Hilaire, I. Hill, M. Hursin, R. Ichou, R. Jacqmin, B. Jansky, C. Jouanne, M.A. Kellett, D.H. Kim, H.I. Kim, I. Kodeli, A.J. Koning, A.Y. Konobeyev, S. Kopecky, B. Kos, A. Krása, L.C. Leal, N. Leclaire, P. Leconte, Y.O. Lee, H. Leeb, O. Litaize, M. Majerle, J.I. Márquez Damián, F. Michel-Sendis, R.W. Mills, B. Morillon, G. Noguère, M. Pecchia, S. Pelloni, P. Pereslavtsev, R.J. Perry, D. Rochman, A. Röhrmoser, P. Romain, P. Romojaro, D. Roubtsov, P. Sauvan, P. Schillebeeckx, K.H. Schmidt, O. Serot, S. Simakov, I. Sirakov, H. Sjöstrand, A. Stankovskiy, J.C. Sublet, P. Tamagno, A. Trkov, S. van der Marck, F. Álvarez-Velarde, R. Villari, T.C. Ware, K. Yokoyama, G. Žerovnik, The joint evaluated fission and fusion nuclear data library, JEFF-3.3, Eur. Phys. J. A 56, 181 (2020) [CrossRef] [Google Scholar]
  43. D.A. Brown, et al., ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148, 1 (2018), Special Issue on Nuclear Reaction Data. [Google Scholar]
  44. A. Shama, Ph.D. thesis, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland, 2022 [Google Scholar]
  45. G. Van Den Eynde, A. Stankovskiy, L. Fiorito, M. Broustaut, Development and validation of ALEPH2 Monte Carlo burn-up code, in International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, (M&C 2013) (2013), pp. 1–12, Available from: https://www.osti.gov/biblio/22212898 [Google Scholar]
  46. M. Becker, Code and data enhancements of the MURE C++ environment for Monte-Carlo simulation and depletion, Atw. Atomwirtschaft 65, 337 (2020) [Google Scholar]
  47. B.J. Ade, SCALE/TRITON primer: a primer for light water reactor lattice physics calculations, Technical Report ORNL/TM-2011/21 and NUREG/CR-7041, Oak Ridge National Laboratory, USA, 2012 [Google Scholar]
  48. D. Siefman, M. Hursin, D. Rochman, S. Pelloni, A. Pautz, Stochastic vs. sensitivity-based integral parameter and nuclear data adjustments, Eur. Phys. J. Plus 133,429 (2018) [Google Scholar]
  49. G. Radulescu, I.C. Gauld, G. Ilas, SCALE 5.1 predictions of PWR spent nuclear fuel isotopic compositions, Technical Report ORNL/TM-2010/44, Oak Ridge National Laboratory (ORNL), 2010, Available from: https://www.nrc.gov/docs/ML1616/ML16161A523.pdf [Google Scholar]
  50. D. Rochman, A. Vasiliev, H. Ferroukhi, M. Hursin, Analysis for the ARIANE BM1 and BM3 samples: nuclide inventory and decay heat, EPJ Nuclear Sci. Technol. 7, 18 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  51. S. Azzouzi, SCALE-6 fuel depletion analyses: application to the ARIANE program, Technical Report, SCK-CEN, Belgium, 2010, Available from: https://publications.sckcen.be/portal/files/4559857/SCALE_6_fuel_depletion_analyses_Application_to_the_ARIANE_program.pdf [Google Scholar]
  52. D. Rochman, Validation of CASMO5, SIMULATE and SNF with PIE data from the PROTEUS, ARIANE and MALIBU programs, Technical Report TM-41-21-27, Paul Scherrer Institute (PSI), 2021 [Google Scholar]
  53. D. Rochman, O. Leray, M. Hursin, H. Ferroukhi, A. Vasiliev, A. Aures, F. Bostelmann, W. Zwermann, O. Cabellos, C.J. Diez, J. Dyrda, N. Garcia-Herranz, E. Castro, S. van der Marck, H. Sjöstrand, A. Hernandez, M. Fleming, J.-C. Sublet, L. Fiorito, Nuclear data uncertainties for typical LWR fuel assemblies and a simple reactor core, Nucl. Data Sheets 139, 1 (2017), Special Issue on Nuclear Reaction Data [CrossRef] [Google Scholar]
  54. American Nuclear Society Standards Committee Working Group ANS-5.1, Decay heat power in light water reactors, Technical Report ANSI/ANS-5.1-2014, American Nuclear Society, 2014 [Google Scholar]
  55. DIN Standards Committee Materials Testing, Calculation of the decay power in nuclear fuels of light water reactors – Part 1: Uranium oxide nuclear fuel for pressurized water reactors, English translation of DIN 25463-1:2014-02, Technical Report DIN 25463-1:2014-02, DIN Standards Committee Materials Testing, Germany, 2014 [Google Scholar]
  56. DIN Standards Committee Materials Testing, Calculation of the decay power in nuclear fuels of light water reactors – Part 2: Mixed-uranium-plutonium oxide (MOX) nuclear fuel for pressurized water reactors, English translation of DIN 25463-2:2014-02, Technical Report DIN 25463-2:2014-02, DIN Standards Committee Materials Testing, Germany, 2014 [Google Scholar]
  57. K. Tasaka, J. Katakura, T. Yoshida, Recommended values of decay heat power and method to utilize the data, Technical Report JAERI-M 91-034, NEANDC(J)-161/U and INDC(JPN)-149/L, Japan Atomic Energy Research Institute (JAERI), Japan, 1991 [Google Scholar]
  58. T. Simeonov, C. Wemple, A procedure for verification of Studsvik’s spent nuclear fuel code SNF, Kerntechnik 84, 246 (2019). [CrossRef] [Google Scholar]
  59. I.C. Gauld, G. Ilas, B.D. Murphy, C.F. Weber, Validation of SCALE 5 decay heat predictions for LWR Spent Nuclear Fuel, Technical Report ORNL/TM-2008/015 and NUREG/CR-6972, Oak Ridge National Laboratory, USA, 2010 [Google Scholar]
  60. B.D. Murphy, I.C. Gauld, Spent fuel decay heat measurements performed at the Swedish Central Interim Storage Facility, Technical Report ORNL/TM-2008/016 and NUREG/CR-6971, Oak Ridge National Laboratory, USA, 2010 [Google Scholar]
  61. T. Yamamoto, D. Iwahashi, Validation of decay heat calculation results of ORIGEN2.2 and CASMO5 for light water reactor fuel, J. Nucl. Sci. Technol. 53, 2108 (2016) [CrossRef] [Google Scholar]
  62. P. Jansson, M. Bengtsson, U. Bäckström, F. Àlvarez-Velarde, D. Calic, S. Caruso, R. Dagan, L. Fiorito, L. Giot, K. Govers, A. Hernez Solis, V. Hannstein, G. Ilas, M. Kromar, J. Leppänen, M. Mosconi, P. Ortego, R. Plukiene, A. Plukis, A. Ranta-aho, D. Rochman, L. Ros, S. Sato, P. Schillebeeckx, A. Shama, T. Simeonov, A. Stankovskiy, H. Trellue, S. Vaccaro, V. Vallet, M. Verwerft, G. Zerovnik, A. Sjöland, Blind benchmark exercise for spent nuclear fuel decay heat, Nucl. Sci. Eng. 196, 1125 (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.