Open Access
EPJ Nuclear Sci. Technol.
Volume 9, 2023
Article Number 15
Number of page(s) 18
Published online 27 February 2023
  1. Y. Wang, S. Schunert, J. Ortensi, V. Laboure, M. DeHart, Z. Prince, F. Kong, J. Harter, P. Balestra, F. Gleicher, Rattlesnake: a MOOSE-based multiphysics, multischeme radiation-transport application, Nucl. Technol. 207, 7 (2021) [Google Scholar]
  2. E.R. Shemon, M.A. Smith, C.H. Lee, PROTEUS-SN methodology manual, Technical Report, Argonne National Laboratory, 2014 [Google Scholar]
  3. J. Leppänen, M. Aufiero, E. Fridman, R. Rachamin, S. van der Marck, Calculation of effective point kinetics parameters in the Serpent 2 Monte Carlo code, Ann. Nucl. Energy 65, 272 (2014) [CrossRef] [Google Scholar]
  4. A. Hébert, A general presentation of the SPH equivalence technique in non-fundamental mode cases, Ann. Nucl. Energy 141, 107323 (2020) [CrossRef] [Google Scholar]
  5. V. Labouré, Y. Wang, J. Ortensi, S. Schunert, F. Gleicher, M. DeHart, R. Martineau, Hybrid super homogenization and discontinuity factor method for continuous finite element diffusion, Ann. Nucl. Energy 128, 443 (2019) [CrossRef] [Google Scholar]
  6. C. Lee, T.J. Downar, K.O. Ott, H.G. Joo, An assesment of consistent bilinear weighted two-group spatial kinetics for MOX fuel applications, in Proceedings of the PHYSOR-2000 conference, ANS International Topical Meeting on Advances in Reactor Physics, and Mathematics and Computation into the Next Millenium, Pittsburgh, PA, May 7–11 (2000) [Google Scholar]
  7. A. dos Santos, R. Diniz, The evaluation of the effective kinetic parameters and reactivity of the IPEN/MB-01 reactor for the International Reactor Physics Experiment Evaluation Project, Nucl. Sci. Eng. 178, 459 (2014) [CrossRef] [Google Scholar]
  8. J. Hykes, R. Ferrer, J. Rhodes, CASMO5 analysis of select IPEN/MB-01 experiments, in Proceedings of the PHYSOR 2018, Cancun, April 2018, pp. 3985–3999 [Google Scholar]
  9. N. Leclaire, I. Duhamel, Validation of the MORET 5 Monte Carlo transport code on reactor physics experiments, J. Nucl. Eng. 2, 65 (2021) [CrossRef] [Google Scholar]
  10. A. Santamarina, V. Pascal, G. Truchet, J.F. Vidal, Validation of LWR reactivity versus reactor period. Feedback on the delayed neutron data (beta i, lambda i), in PHYSOR2018: Reactor Physics Paving the Way Towards More Efficient Systems, Cancun, Mexico, April 2018 [Google Scholar]
  11. Y. Liu, K. Vaughn, B. Kochunas, T. Downar, Validation of pin-resolved reaction rates, kinetics parameters, and linear source MOC in MPACT, Nucl. Sci. Eng. 195, 50 (2021) [CrossRef] [Google Scholar]
  12. S.C. van der Marck, βeff calculations using JEFF-3.1 nuclear data. Technical Report, 2005 [Google Scholar]
  13. S.C. van der Marck, Benchmarking ENDF/B-VII.0, Nucl. Data Sheets 107, 3061 (2006) [CrossRef] [Google Scholar]
  14. M. DeHart, F. Gleicher, J. Ortensi, A. Alberti, T. Palmer, Multi-physics simulation of TREAT kinetics using MAMMOTH, in ANS Winter Meeting, November, 2015 [Google Scholar]
  15. J. Ortensi, Y. Wang, V. Labouré, F. Gleicher, S. Schunert, M.D. DeHart, Improvements to the modeling of the TREAT reactor and experiments, EPJ Web Conf. 247, 06025 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  16. J. Ortensi, B.A. Baker, M.P. Johnson, Y. Wang, V.M. Labouré, S. Schunert, F.N. Gleicher, M.D. DeHart, Validation of the Griffin application for treat transient modeling and simulation, Nucl. Eng. Des. 385, 111478 (2021) [CrossRef] [Google Scholar]
  17. Z.M. Prince, J.C. Ragusa, Multiphysics reactor-core simulations using the improved quasi-static method, Ann. Nucl. Energy 125, 186 (2019) [CrossRef] [Google Scholar]
  18. G.I. Bell, S. Glasstone, Nuclear Reactor Theory (Van Nostrand Reinhold, New York, 1979) [Google Scholar]
  19. A. Hébert, Applied Reactor Physics , 2nd edn. (Presses Internationales Polytechnique, Montréal, 2016) [Google Scholar]
  20. R.K. Meulekamp, S.C. van Der Marck, Calculating the effective delayed neutron fraction with Monte Carlo, Nucl. Sci. Eng. 152, 142 (2006) [CrossRef] [Google Scholar]
  21. Y. Nauchi, T. Kameyama, Proposal of direct calculation of kinetic parameters βeff and based on continuous energy Monte Carlo method, J. Nucl. Sci. Technol. 42, 503 (2005) [CrossRef] [Google Scholar]
  22. Y. Nauchi, T. Kameyama, Development of calculation technique for iterated fission probability and reactor kinetic parameters using continuous-energy Monte Carlo method, J. Nucl. Sci. Technol. 47, 977 (2010) [CrossRef] [Google Scholar]
  23. R. Morris, CUBIT 15.0 User Documentation. Technical Report, ETI, UT, 2014 [Google Scholar]
  24. E. Fridman, E. Shwageraus, Modeling of SFR cores with Serpent–DYN3D codes sequence, Ann. Nucl. Energy 53, 354 (2013) [CrossRef] [Google Scholar]
  25. R.J. LaBauve, Bare, highly enriched uranium sphere (Godiva). Technical Report, Nuclear Energy Agency (NEA/NSC/DOC(95)03/II, HEU-MET-FAST-001), 2002 [Google Scholar]
  26. G. Truchet, P. Leconte, A. Santamarina, E. Brun, F. Damian, A. Zoia, Computing adjoint-weighted kinetics parameters in Tripoli-4® by the iterated fission probability method, Ann. Nucl. Energy 85, 17 (2015) [CrossRef] [Google Scholar]
  27. R.W. Brewer, Benchmark critical experiment of a Uranium-233 sphere reflected by normal uranium with Flattop. Technical Report, Nuclear Energy Agency (NEA/NSC/DOC(95)03/V, U233-MET-FAST-006), 2000 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.