Issue
EPJ Nuclear Sci. Technol.
Volume 9, 2023
Euratom Research and Training in 2022: challenges, achievements and future perspectives
Article Number 13
Number of page(s) 12
Section Part 2: Radioactive waste management
DOI https://doi.org/10.1051/epjn/2022029
Published online 21 February 2023
  1. M. Seidl, P. Schillebeeckx, D. Rochman, On the potential to increase the accuracy of source term calculations for spent nuclear fuel from an industry perspective, Atw Int. J. Nucl. Power 65, 353 (2020) [Google Scholar]
  2. F. Michel-Sendis, et al., SFCOMPO-2.0: an OECD NEA database of spent nuclear fuel isotopic assays, reactordesign specifications, and operating data, Ann. Nucl. Energy 110, 779 (2017) [CrossRef] [Google Scholar]
  3. D. Rochman, et al., Improvement of PIE analysis with a full core simulation: the U1 case, Ann. Nucl. Energy 148, 107706 (2020) [CrossRef] [Google Scholar]
  4. D. Rochman, et al., Impact of H in H2O thermal scattering data on depletion calculation: k, nuclide inventory and decay heat, EPJ Nuclear Sci. Technol. 7, 24 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  5. D. Rochman, et al., Analysis for the ARIANE GU1 sample: nuclide inventory and decay heat, Ann. Nuclear Energy 160, 108359 (2021) [CrossRef] [Google Scholar]
  6. D. Rochman, et al., Analysis for the ARIANE GU3 sample: nuclide inventory and decay heat, EPJ Nuclear Sci. Technol. 7, 14 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  7. D. Rochman, et al., Analysis for the ARIANE BM1 and BM3 samples: nuclide inventory and decay heat, EPJ Nuclear Sci. Technol. 7, 18 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  8. S. Hakkinen, Gundremmingen – a assembly B23 sample I2680 depletion calculation with Serpent 2, Tech. Rep. VTT-R-00631-21, VTT Technical Research Centre of Finland (July, 2021), https://cris.vtt.fi/en/publications/gundremmingen-a-assembly-b23-sample-i2680-depletion-calculation-w [Google Scholar]
  9. S. Hakkinen, Sensitivity and uncertainty analysis of Gundremmingen – a assembly B23 sample I2680 depletion calculation with Serpent 2, Tech. Rep. VTT-R-00632-21, VTT Technical Research Centre of Finland (July 2021), https://cris.vtt.fi/en/publications/sensitivity-and-uncertainty-analysis-of-gundremmingen-a-assembly- [Google Scholar]
  10. M. Kromar, B. Kurincic, Determination of the NPP Krsko spent fuel decay heat, in AIP Conference Proceedings: Thermophysics 2017 (AIP Publishing, July 2017), Vol. 1866, p. 050005, https://aip.scitation.org/doi/abs/10.1063/1.4994529 [Google Scholar]
  11. M. Kromar, D. Calic, Impact of different fuel temperature models on the nuclear core design predictionsof the NPP Krsko, in International Conference on Nuclear Energy for New Europe, September 6–9, Bled, Slovenia (2021) https://www.djs.si/nene2021/proceedings/pdf/NENE2021_322.pdf [Google Scholar]
  12. A. Hernandez-Solis, et al., Boundary condition modelling effect on the spent fuel characterization and final decayheat prediction from a PWR assembly, EPJ Web Conf. 247, 12008 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  13. L. Fiorito, et al., On the use of criticality and depletion benchmarks for verification of nuclear data, Ann. Nucl. Energy 161, 108415 (2021) [CrossRef] [Google Scholar]
  14. A. Shama, et al., Validation of spent nuclear fuel decay heat calculations using Polaris, ORIGEN and CASMO5, Ann. Nucl. Energy 165, 108758 (2022) [CrossRef] [Google Scholar]
  15. F. Alvarez-Velarde, S. Panizo-Prieto, Contribution of CIEMAT to EURAD WP8 Task 2.1 on uncertaintypropagation in depletion analyses, Tech. Rep. CIEMAT (July 2022) [Google Scholar]
  16. P. Schillebeeckx, M. Verwerft, G. Žerovnik, Y. Parthoens, B. Pedersen, G. Alaerts, G. Cools, K. Govers, J. Paepen, G. Varasano, R. Wynants, A non-destructive method to determine the neutron production rate of a sample of spent nuclear fuel under standard controlled area conditions, JRC Tech. Rep. EUR 30379 EN (2020) [Google Scholar]
  17. V. Solans, H. Sjöstrand, P. Jansson, S. Grape, P. Schillebeeckx, A. Sjöland, Evaluating peak area uncertainties in connection to passive gamma measurements of spent nuclear fuel, in Proceedings TopFuel, Santander, Spain, October 24–28 (2021) [Google Scholar]
  18. B. Hanson, H. Alsaed, C. Stockman, D. Enos, R. Meyer, K. Sorenson, Gap analysis to support extended storage of used nuclear fuel, Report PNNL-20509, Pacific Northwest National Laboratory, (2012) [Google Scholar]
  19. D. Papaioannou, R. Nasyrow, R. Gretter, L. Fongaro, V. Rondinella, Mechanical properties of spent nuclear fuel rods, Progress Report Part A, JRC122564, European Commission, Karlsruhe (2020). [Google Scholar]
  20. A. Barreiro Fidalgo, O. Roth, A. Puranen, L.Z. Evins, K. Spahiu, Aqueous leaching of ADOPT and standard UO2 spent nuclear fuel under H2 atmosphere, MRS Adv. 5, 167 (2020) [CrossRef] [Google Scholar]
  21. V. Metz, M. Herm, F. Clarens, J. Kokinda, J. de Pablo, P. Carbol, D. Serrano-Purroy, A. Barreiro, O. Roth, Spent nuclear fuel experiments: dissolution results for modelling input DELIVERABLE D3.2, DisCo project (Grant Agreement 755443), Euratom Research and Training Programme on Nuclear Energy, Horizon 2020 Framework Programme, European Commission (2020) [Google Scholar]
  22. V. Metz, Spent nuclear fuel experiments: final results of dissolution experiments Deliverable D3.3, DisCo project (Grant Agreement 755443), Euratom Research and Training Programme on Nuclear Energy, Horizon 2020 Framework Programme, European Commission (2020) [Google Scholar]
  23. L.Z. Evins, D. Bosbach, L. Duro, I. Farnan, V. Metz, O. Riba, Final Scientific Report. Deliverable D1.26, DisCo project (Grant Agreement 755443), Euratom Research and Training Programme on Nuclear Energy, Horizon 2020 Framework Programme, European Commission (2020) [Google Scholar]
  24. P. Kegler, M. Klinkenberg, A. Bukaemskiy, G. Murphy, G. Deissmann, F. Brandt, D. Bosbach, Chromium doped UO2-based ceramics: synthesis and characterization of model materials for modern nuclear fuels, Materials 14, 6160 (2021) [CrossRef] [Google Scholar]
  25. A. Milena-Pérez, L.J. Bonales, N. Rodrguez-Villagra, S. Fernández, V.G. Baonza, J. Cobos, Raman spectroscopy coupled to principal component analysis for studying UO2 nuclear fuels with different grain sizes due to the chromia addition, J. Nucl. Mater. 543, 152581 (2021) [CrossRef] [Google Scholar]
  26. H. Smith, T. Cordara, R. Mohun, M.C. Stennett, N.C. Hyatt, C.L. Corkhill, Assessment of long-term durability of Cr2O3 doped UO2, in 3rd Annual Meeting Proceedings, edited by L.Z. Evins, A. Valls, L. Duro, Deliverable D1.20, DisCo project (Grant Agreement 755443), Euratom Research and Training Programme on Nuclear Energy, Horizon 2020 Framework Programme, European Commission (2020) [Google Scholar]
  27. E.T. Perry, A.J. Popel, I. Farnan, Fabrication and characterisation of (U1-xThx)O2 samples to model mixed oxide fuel, in Final Conference Proceedings, edited by L.Z. Evins, A. Valls, L. Duro, Delieverable D1.25, DisCo project (Grant Agreement 755443), Euratom Research and Training Programme on Nuclear Energy, Horizon 2020 Framework Programme, European Commission 2021 [Google Scholar]
  28. A.C. Maier, P. Kegler, M. Klinkenberg, A. Baena, S. Finkeldei, F. Brandt, M. Jonsson, On the change in UO2 redox reactivity as a function of H2O2 exposure, Dalton Trans. 49, 1241 (2020) [CrossRef] [Google Scholar]
  29. C. Cachoir, T. Mennecart, K. Lemmens, Evolution of the uranium concentration in dissolution experiments with Cr-(Pu) doped UO2 in reducing conditions at SCK CEN, MRS Adv. 6, 84 (2021) [CrossRef] [Google Scholar]
  30. E. Curti, D.A. Kulik, Oxygen potential calculations for conventional and Cr-doped UO2 fuels based on solid solution thermodynamics, J. Nucl. Mater. 534, 152140 (2020) [CrossRef] [Google Scholar]
  31. O. Riba, E. Coene, O. Silva, L. Duro, Spent fuel alteration model integrating processes of different time-scales, MRS Adv. 5, 159 (2020) [CrossRef] [Google Scholar]
  32. V. Kerleguer, C. Jégou, L. De Windt, V. Broudic, G. Jouan, S. Miro, F. Tocino, C. Martin, The mechanisms of alteration of a homogeneous U0.73Pu0.27O2 MOx fuel under alpha radiolysis of water, J. Nucl. Mater. 529, 151920 (2020) [CrossRef] [Google Scholar]
  33. F. King, M. Kolar, D.W. Shoesmith, Modelling the oxidative dissolution of UO2, in MRS Online Proceedings Library (OPL) (1999), Vol. 556 [Google Scholar]
  34. R.J. Hughes, D.I. Hambley, M. Bankhead, EU DisCo Model Description, Uncertainties and Results. Deliverable D5.4, DisCo project (Grant Agreement 755443), Euratom Research and Training Programme on Nuclear Energy, Horizon 2020 Framework Programme, European Commission (2020) [Google Scholar]
  35. A. Barreiro Fidalgo, M. Jonsson, Radiation induced dissolution of (U, Gd)O2 pellets in aqueous solution: a comparison to standard UO2 pellets, J. Nucl. Mater. 514, 216 (2019) [CrossRef] [Google Scholar]
  36. A. Puranen, O. Roth, L.Z. Evins, K. Spahiu, Aqueous leaching of high burnup UO2 fuel under hydrogen conditions, MRS Adv. 3, 1013 (2018) [CrossRef] [Google Scholar]
  37. E. Ekeroth, M. Granfors, D. Schild, K. Spahiu, The effect of temperature and fuel surface area on spent nuclear fuel dissolution kinetics under H2 atmosphere, J. Nucl. Mater. 531, 151981 (2020) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.