Open Access
EPJ Nuclear Sci. Technol.
Volume 8, 2022
Article Number 18
Number of page(s) 15
Published online 13 September 2022
  1. B.F. Rider, J.L. Russel, D.W. Harris, J.P. Peterson, The Determination of Uranium Burnup in MWd/ton, Report GEAP-3373 (1960) [Google Scholar]
  2. B.F. Rider, C.P. Ruiz, J.P. Peterson, F.R. Smith, Determination of Neodymium-148 in Irradiated Uranium and Plutonium as a Measure of Burnup, Pleasanton, CA, USA, Report GEAP-5354 (1967) [Google Scholar]
  3. R.J. Nodvik, Evaluation of Mass Spectrometric and Radiochemical Analyses of Yankee Core I Spent Fuel, Pittsburgh, Pennsylvania, USA, Report WCAP-6068 (1966) [Google Scholar]
  4. B.F. Rider, C.P. Ruiz, J.P. Peterson, F.R. Smith, Burnup: A FORTRAN IV Code for Computing U and Pu Fuel Burnup from U, Pu and Nd Mass Spectrometric Measurements, Report GEAP-5355 (1967) [Google Scholar]
  5. K. Inoue, K. Taniguchi, T. Murata, H. Mitsui, A. Doi, Burnup Determinaton of Nuclear Fuel, J. Mass Spectrom. Soc. Jpn. 17, 830 (1969) [CrossRef] [Google Scholar]
  6. F.L. Lisman, W.J. Maeck, J.E. Rein, Determination of Nuclear Fuel Burnup from Fission Product Analysis, Nucl. Sci. Eng. 42, 215 (1970) [CrossRef] [Google Scholar]
  7. A. Ariemma, L. Bramati, M. Galliani, M. Paoletti Gualandi, B. Zaffiro, A. Cricchio, L. Koch, Experimental and Theoretical Determination of Burnup and Heavy Isotope Content in a Fuel Assembly Irradiated in the Garigliano Boiling Water Reactor, Rome, Italy, Report EUR 4638 (1971) [Google Scholar]
  8. P.J. Richardson, Method for Determining Burnup in Enriched Uranium-235 Fuel Irradiated by Fast Reactor Neutrons, Report NASA TM X-2153 (1971) [Google Scholar]
  9. A.M. Bresesti, M. Bresesti, S. Facchetti et al., Post-irradiation Analysis of Trino Vercellese Reactor Fuel Elements, Ispra, Italy, Report EUR 4909 (1972) [Google Scholar]
  10. H.U. Zwicky, J. Low, M. Granfors, C. Alejano, J.M. Conde, C. Casado, J. Sabater, M. Lloret, M. Quecedo, J.A. Gago, Nuclide Analysis in High Burnup Fuel Samples Irradiated in Vandellós 2, J. Nucl. Mater. 402, 60 (2010) [CrossRef] [Google Scholar]
  11. J.E. Rein, Status of Burn-up Measurement Methodology, in Symposium on Analytical Methods in the Nuclear Fuel Cycle, IAEA, Vienna (1972), pp. 449–471 [Google Scholar]
  12. J.S. Kim, Y.S. Jeon, S.D. Park, Y.-K. Ha, K. Song, Analysis of high burnup pressurized water reactor fuel using uranium, plutonium, neodymium, and cesium isotope correlations with burnup, Nucl. Eng. Technol. 47, 924 (2015) [CrossRef] [Google Scholar]
  13. ASTM, ASTM E244, Test Method for Atom Percent Fission in Uranium and Plutonium Fuel (Mass Spectrometric Method) (Withdrawn 2001), ASTM International, West Conshohocken, PA, USA (1995) [Google Scholar]
  14. P. de Regge, R. Boden, Determination of neodymium isotopes as burnup indicator of highly irradiated (U, Pu)O2 LMFBR fuel, J. Radioanal. Chem. 35, 173 (1977) [CrossRef] [Google Scholar]
  15. P. de Regge, D. Huys, R. Boden, Radiochemical Analysis Methods for Burn-up Determination in Irradiated Fuel, Vortragstagung: Kern-, Radio- und Strahlenchemie, Grundlagen und Anwendungen, Jülich (1980) [Google Scholar]
  16. P. de Regge, D. Huys, R. Boden, C. Ballaux, Actual Experience in Burnup Determination of Mixed Oxide Fuel, Burnup Determination of Water Reactor Fuel, Karlsruhe (1989), pp. 23–28 [Google Scholar]
  17. R. Boden, Methodology, Calculation and Interpretation in the Destructive Burnnup Determination of Nuclear Fuel, Report (1992) [Google Scholar]
  18. M. Gysemans, P. Van Bree, A. Dobney, L. Vandevelde, REBUS International Programme, Destructive Radiochemical Spent Fuel Characterization of a PWR UO2 Fuel Sample M11 – Final Report Mol, Belgium, Report (2006) [Google Scholar]
  19. Y.-K. Ha, J.-S. Kim, Y.-S. Jeon, S.-H. Han, H.-S. Seo, K.-S. Song, Local burnup characteristics of PWR spent nuclear fuels discharged from Yeonggwang-2 nuclear power plant, Nucl. Eng. Technol. 42, 79 (2010) [CrossRef] [Google Scholar]
  20. J.A. Baumgartner, BWR Fuel Bundle Extended Burnup Program, Final Report San Jose, California, USA, Report (1984) [Google Scholar]
  21. D. Boulanger, M. Lippens, ARIANE Program – Final Report, Belgonucléaire, Brussels, Belgium, Report (2000) [Google Scholar]
  22. Y. Nakahara, K. Suyama, T. Suzaki, Technical Development on Burn-up Credit for Spent LWR Fuels, ORNL, Tokai-mura, Japan, Report (2002) [Google Scholar]
  23. T. Yamamoto, Y. Kanayama, Lattice physics analysis of burnups and isotope inventories of U, Pu, and Nd of irradiated BWR 9 × 9–9 UO2 fuel assemblies, J. Nucl. Sci. Technol. 45, 547 (2008) [CrossRef] [Google Scholar]
  24. H.U. Zwicky, Isotopic Data of Sample F3F6 from a Rod Irradiated in the Swedish Boiling Water Reactor Forsmark 3, Zwicky Consulting, Report ZC-08/001 (2008) [Google Scholar]
  25. H.U. Zwicky, J. Low, Fuel Pellet Isotopic Analyses of Vandellós 2 Rods WZtR165 Ans WZR0058: Complementary Report, Report Studsvik/N(H)-04/135 Rev. 1 (2008) [Google Scholar]
  26. M. Suzuki, T. Yamamoto, H. Fukaya, K. Suyama, G. Uchiyama, Lattice physics analysis of measured isotopic compositions of irradiated BWR 9 × 9 UO2 fuel, J. Nucl. Sci. Technol. 50, 1161 (2013) [CrossRef] [Google Scholar]
  27. H.U. Zwicky, J. Low, M. Granfors, Additional Fuel Pellet Isotopic Analyses of Vandellós 2 Rods WZtR165 ans WZR0058, Report Studsvik/N-07/140 Rev. 1 2010) [Google Scholar]
  28. C. Alejano, D. Boulanger, M. Brady-Raap et al., Spent Nuclear Fuel Assay Data for Isotopic Validation, OECD, Report NEA/NSC/WPNCS/DOC(2011)5 (2011) [Google Scholar]
  29. J. Eysermans, M. Verwerft, K. Govers, R. Ichou, G. Ilas, U. Meryturek, N. Messaoudi, P. Romojaro, N. Slosse, REGAL International Program: Analysis of experimental data for depletion code validation, Ann. Nucl. Energy 172, 109057 (2022) [CrossRef] [Google Scholar]
  30. ASTM, ASTM E321, Standard Test Method for Atom Percent Fission in Uranium and Plutonium Fuel (Neodymium-148 Method), ASTM International, West Conshohocken, PA, USA (2020) [Google Scholar]
  31. T.P. Makarova, Investigation of spent nuclear fuel from WWER-440, WWER-1000 and RBMK-1000, Report (2004) [Google Scholar]
  32. T.P. Makarova, B.A. Bibichev, V.D. Domkin, Destructive analysis of the nuclide composition of spent fuel of WWER-440, WWER-1000, and RBMK-1000 reactors, Radiochemistry 50, 414 (2008) [CrossRef] [Google Scholar]
  33. R.J. Guenther, D.E. Blahnik, T.K. Campbell, U.P. Jenquin, J.E. Mendel, L.E. Thomas, C.K. Thornhill, Characterization of Spent Fuel Approved Testing Material ATM-105, Pacific Northwest Laboratory, Richland, Washington Report PNL-5109-105 (1991) [Google Scholar]
  34. T.R. England, B.F. Rider, Evaluation and Compilation of Fission Product Yields 1993, Report LA-SUB-94-170 (1995) [Google Scholar]
  35. C. Devida, M. Betti, P. Peerani, E.H. Toscano, W. Goll, in Quantitative Burnup Determination: A Comparision of Different Experimental Methods, HOTLAB Plenary Meeting 2004, SCK-CEN, Halden, Norway (2004), pp. 106–113. [Google Scholar]
  36. H. Natsume, H. Okashita, H. Umezawa et al., Gamma-ray spectrometry and chemical analysis data of JPDR-I spent fuel, J. Nucl. Sci. Technol. 14, 745 (1977) [CrossRef] [Google Scholar]
  37. P. Barbero, G. Bidoglio, M. Bresesti et al., Post-irradiation Analysis of the Gundremmingen BWR Spent Fuel, Ispra, Italy, Report EUR 6301 (1979) [Google Scholar]
  38. ORNL, SCALE Code System , edited by B.T. Rearden, M.A. Jessee, Report ORNL/TM-2005/39 version 6.2.2 (2017) [Google Scholar]
  39. S. Mughabghad, Atlas of Neutron Resonances , 6th edn. (Elsevier Science, Amsterdam, 2018) [Google Scholar]
  40. M. Verwerft, S.E. Lemehov, M. Wéber et al., Oxide Fuels: Microstructure and Composition Variations (OMICO) – Final Report SCK⋅CEN, Mol, Report EUR 23104 (2007) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.