Issue |
EPJ Nuclear Sci. Technol.
Volume 8, 2022
|
|
---|---|---|
Article Number | 18 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/epjn/2022018 | |
Published online | 13 September 2022 |
https://doi.org/10.1051/epjn/2022018
Regular Article
Evaluation of the irradiation-averaged fission yield for burnup determination in spent fuel assays
1
Belgian Nuclear Research Centre (SCK CEN), Boeretang, 200, 2400 Mol, Belgium
2
Federal Agency for Nuclear Control (FANC), Rue du Marquis 1 Box 6A, 1000 Brussels, Belgium
* e-mail: goversk@hotmail.com
Received:
17
January
2022
Received in final form:
20
April
2022
Accepted:
25
July
2022
Published online: 13 September 2022
In order to derive the burnup of spent nuclear fuel from the concentration of selected fission products (typically the Nd isotopes and 137Cs), their irradiation-averaged fission yields need to be known with sufficient accuracy, as they evolve with the changes in the actinide vector over the irradiation history. To obtain irradiation-averaged values, radiochemists often resort to robust generic methods – i.e., based on simple mathematical relations – that weight the fission yields according to the actinides contributing to fission, without performing core physics calculations. In order to assess the performance of those generic methods, a database of about 30 000 spent nuclear fuel inventories has been constructed from neutron transport and depletion simulations, covering a representative range of fuel enrichment, burnup, assembly designs and reactor types. When testing several existing methods for effective fission yield calculation, some inaccuracies were identified, originating from improper one-group cross-section parameters that do not accurately reflect resonance and self-shielding effects, and too crude approximations in the estimation of the actinide concentration evolution. Revised effective fission and absorption cross-section parameters are then proposed here, as a first improvement to the earlier burnup determination methods. As a second step, a novel method is proposed that reduces the error on their radiation-averaged fission yield values, and hence on burnup, while retaining a straightforward calculation scheme.
© K. Govers et al., Published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.