Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 5, 2019
Article Number 11
Number of page(s) 29
DOI https://doi.org/10.1051/epjn/2019030
Published online 08 November 2019
  1. G.P. Mezzi, Nucl. Eng. Des. 73, 83 (1983) [CrossRef] [Google Scholar]
  2. M. Oguma, Nucl. Eng. Des. 76, 35 (1983) [CrossRef] [Google Scholar]
  3. L.A. Walton, D.L. Husser, in Water Reactor Fuel Element Performance Computer Modelling, edited by J.H. Gittus (Applied Science Publishers, London, UK, 1983), Chap. 7, pp. 115–135 [Google Scholar]
  4. O. Coindreau, F. Fichot, J. Fleurot, Nucl. Eng. Des. 255, 68 (2013) [CrossRef] [Google Scholar]
  5. Nuclear fuel behaviour under reactivity-initiated accident (RIA) conditions. Report 6847, OECD Nuclear Energy Agency, Paris, France, 2010 [Google Scholar]
  6. D. Lespiaux, J. Noirot, P. Menut, in 1997 International Topical Meeting on Light Water Reactor Fuel Performance (American Nuclear Society, Portland, OR, 1997), pp. 650–658 [Google Scholar]
  7. T. Fuketa, T. Nakmura, H. Sasajima, F. Nagase, H. Uetsuka, K. Kikuchi, T. Abe, in 2000 International Topical Meeting on Light Water Reactor Fuel Performance (American Nuclear Society, Park City, UT, USA, 2000), pp. 359–374 [Google Scholar]
  8. M. Oguma, J. Nucl. Mater. 127, 67 (1985) [CrossRef] [Google Scholar]
  9. O.D. Slagle, C.A. Hinman, E.T. Weber, Experiments on melting and gas release behavior of irradiated fuel. Tech. Rep. HEDL-TME 74-17, Hanford Engineering Development Laboratory, Richland, WA, USA, 1974 [Google Scholar]
  10. L.W. Deitrich, J.F. Jackson, in IAEA-IWGFR specialist’s meeting on role of fission products in whole core accidents, vol. IWGFR–19 (International Atomic Energy Agency, AERE, Harwell, UK, 1977), Vol. IWGFR–19, pp. 66–87 [Google Scholar]
  11. R.J. DiMelfi, J.M. Kramer, Nucl. Technol. 62, 51 (1983) [CrossRef] [Google Scholar]
  12. S.A. Wright, E.A. Fischer, Eur. Appl. Res. Rep. Nucl. Sci. Technol. 5, 1393 (1984) [Google Scholar]
  13. J.R. Matthews, A.H. Harker, D.S. Whitmell, in International conference on radiation materials science (Kharkov Fiziko-Tekhnicheskij Institut, Alushta, Soviet Union, 1990), Vol. 1, pp. 184–214 [Google Scholar]
  14. E.E. Gruber, W.R. Bohl, M.G. Stevenson, in Reactor development program progress report (Argonne National Laboratory, Argonne, IL, USA, 1973), ANL-RDP-15, Chap. 9.1 [Google Scholar]
  15. M.W. Finnis, (report unavailable). Harwell Research Report AERE-R 8537, Atomic Energy Research Establishment, Harwell, Oxon, UK, 1976 [Google Scholar]
  16. R.J. DiMelfi, L.W. Deitrich, Nucl. Technol. 43, 328 (1979) [CrossRef] [Google Scholar]
  17. D.H. Worledge, Fuel fragmentation by fission gases during rapid heating. Tech. Rep. SAND80-0328 (NUREG/CR-1611), Sandia National Laboratories, Albuquerque, NM, USA (1980) [Google Scholar]
  18. S.M. Gehl, Release of fission gas during transient heating of LWR fuel. Tech. Rep. ANL-80-108, Argonne National Laboratory, Lemont, IL, USA (1982). Also as U.S. NRC report NUREG/CR-2777 [Google Scholar]
  19. F. Lemoine, J. Nucl. Mater. 248, 238 (1997) [CrossRef] [Google Scholar]
  20. T. Fuketa, H. Sasajima, Y. Mori, K. Ishijima, J. Nucl. Mater. 248, 249 (1997) [CrossRef] [Google Scholar]
  21. V.V. Likhanskii, L.V. Matveev, Atom. Energy 87, 490 (1999) [CrossRef] [Google Scholar]
  22. F. Lemoine, J. Papin, J.M. Frizonnet, B. Cazalis, H. Rigat, in Fission Gas Behaviour in Water Reactor Fuels – Seminar Proceedings (OECD Nuclear Energy Agency, Cadarache, France, 2000), pp. 175–187 [Google Scholar]
  23. K. Une, S. Kashibe, A. Takagi, J. Nucl. Sci. Technol. 43, 1161 (2006) [CrossRef] [Google Scholar]
  24. J.P. Hiernaut, T. Wiss, J.Y. Colle, H. Thiele, C.T. Walker, W. Goll, R.J.M. Konings, J. Nucl. Mater. 377, 313 (2008) [CrossRef] [Google Scholar]
  25. A. Puranen, M. Granfors, P. Askeljung, D. Jädernäs, M. Flanagan, in Proceedingsof 2013 LWR Fuel Performance/TopFuel/WRFPM (American Nuclear Society, Charlotte, NC, USA, 2013), pp. 669–674 [Google Scholar]
  26. B.C. Oberländer, W. Wiesenack, Overview of Halden reactor LOCA experiments (with emphasis on fuel fragmentation) and plans. Report IFE/KR/E-2014/001, Institute for Energy Technology, Kjeller, Norway, 2014 [Google Scholar]
  27. NEA Studsvik cladding integrity project (SCIP-III). https://www.oecd-nea.org/jointproj/scip-3.html (2019) [Google Scholar]
  28. S. Yagnik, J.A. Turnbull, J. Noirot, C.T. Walker, L. Hallstadius, N. Waeckel, P. Blanpain, in 2014 Water Reactor Fuel Performance Meeting (WRFPM-2014) (Atomic Energy Society of Japan, Sendai, Japan, 2014) [Google Scholar]
  29. J.A. Turnbull, S.K. Yagnik, M. Hirai, D.M. Staicu, C.T. Walker, Nucl. Sci. Eng. 179, 477 (2015) [CrossRef] [Google Scholar]
  30. A. Bianco, Experimental investigation on the causes for pellet fragmentation under LOCA conditions. Ph.D. thesis, Technischen Universität München, Germany, 2015 [Google Scholar]
  31. A. Bianco, C. Vitanza, M. Seidl, A. Wensauer, W. Faber, R. Marcian-Juan, J. Nucl. Mater. 465, 260 (2015) [CrossRef] [Google Scholar]
  32. Nuclear fuel behaviour in loss-of-coolant accident (LOCA) conditions. Report 6846, OECD Nuclear Energy Agency, Paris, France, 2009 [Google Scholar]
  33. Report fuel fragmentation, relocation and dispersal. Report NEA/CSNI/R(2016)16, OECD Nuclear Energy Agency, Paris, France, 2016 [Google Scholar]
  34. K. Kulacsy, J. Nucl. Mater. 466, 409 (2015) [CrossRef] [Google Scholar]
  35. M. Suzuki, Y. Udagawa, T. Sugiyama, F. Nagase, in Proceedings of TopFuel 2012 (European Nuclear Society, Manchester, UK, 2012), pp. 554–559 [Google Scholar]
  36. A. Moal, V. Georgenthum, O. Marchand, Nucl. Eng. Des. 280, 150 (2014) [CrossRef] [Google Scholar]
  37. G. Khvostov, Nucl. Eng. Des. 328, 36 (2018) [CrossRef] [Google Scholar]
  38. I. Guenot-Delahaie, J. Sercombe, T. Helfer, P. Goldbronn, E. Federici, T.L. Jolu, A. Parrot, C. Delafoy, C. Bernaudat, Nucl. Eng. Technol. 50, 268 (2018) [CrossRef] [Google Scholar]
  39. M. Tonks, D. Andersson, R. Devanathan, R. Dubourg, A. El-Azab, M. Freyss, F. Iglesias, K. Kulacsy, G. Pastore, S.R. Phillpot, M. Welland, J. Nucl. Mater. 504, 300 (2018) [CrossRef] [Google Scholar]
  40. K.J. Geelhood, W.G. Luscher, P.A. Raynaud, I.E. Porter, FRAPCON-4.0: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup. Report PNNL-19418, Vol. 1, Rev. 2, Pacific Northwest National Laboratory, Richland, WA, USA, 2015 [Google Scholar]
  41. K.J. Geelhood, W.G. Luscher, J.M. Cuta, FRAPTRAN-1.5: A computer code for the transient analysis of oxide fuel rods. Report PNNL-19400, Vol. 1, Rev. 1, Pacific Northwest National Laboratory, Richland, WA, USA, 2014 [Google Scholar]
  42. L.O. Jernkvist, A. Massih, in Fuel Modelling in Accident Conditions (FUMAC): Country Reports from Participants (International Atomic Energy Agency, Vienna, Austria, 2019), IAEA-TECDOC, Vol. 2 [Google Scholar]
  43. E.N. Hodkin, J. Nucl. Mater. 88, 7 (1980) [CrossRef] [Google Scholar]
  44. R.O.A. Hall, M.J. Mortimer, D.A. Mortimer, J. Nucl. Mater. 148, 237 (1987) [CrossRef] [Google Scholar]
  45. M.V. Speight, Nucl. Sci. Eng. 37, 180 (1969) [CrossRef] [Google Scholar]
  46. K. Forsberg, A.R. Massih, J. Nucl. Mater. 135, 140 (1985) [CrossRef] [Google Scholar]
  47. P. Hermansson, A.R. Massih, J. Nucl. Mater. 304, 204 (2002) [CrossRef] [Google Scholar]
  48. J. Rest, M.W.D. Cooper, J. Spino, J.A. Turnbull, P. van Uffelen, C.T. Walker, J. Nucl. Mater. 513, 310 (2019) [CrossRef] [Google Scholar]
  49. J.A. Turnbull, C.A. Friskney, J.R. Findlay, F.A. Johnson, A.J. Walter, J. Nucl. Mater. 107, 168 (1982) [CrossRef] [Google Scholar]
  50. J.A. Turnbull, R.J. White, C. Wise, in Water reactor fuel element computer modelling in steady state, transient and accident conditions (International Atomic Energy Agency, Vienna, Austria, 1988), IAEA-TC-659/3.5, pp. 174–181 [Google Scholar]
  51. F.S. Ham, J. Phys. Chem. Solids 6, 335 (1958) [CrossRef] [Google Scholar]
  52. R.J. White, M.O. Tucker, J. Nucl. Mater. 118, 1 (1983) [CrossRef] [Google Scholar]
  53. H. Matzke, Radiat. Effects 53, 219 (1980) [CrossRef] [Google Scholar]
  54. C. Baker, J. Nucl. Mater. 66, 283 (1977) [CrossRef] [Google Scholar]
  55. T.S. Noggle, J.O. Stiegler, J. Appl. Phys. 31, 2199 (1960) [CrossRef] [Google Scholar]
  56. D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements (National Technology Information Services, Springfield, VA, USA, 1976) [Google Scholar]
  57. B.J. Lewis, J. Nucl. Mater. 148, 28 (1987) [CrossRef] [Google Scholar]
  58. I.J. Hastings, J. Nucl. Mater. 54, 138 (1974) [CrossRef] [Google Scholar]
  59. C.T. Walker, P. Knappik, M. Mogensen, J. Nucl. Mater. 160, 10 (1988) [CrossRef] [Google Scholar]
  60. G.J. Small, in Water Reactor Fuel Element Computer Modelling in Steady State, Transient and Accident Conditions (IAEA, Vienna, Austria, 1989), IWGFPT/32, pp. 209–220 [Google Scholar]
  61. S. Kashibe, K. Une, J. Nucl. Sci. Technol. 28, 1090 (1991) [CrossRef] [Google Scholar]
  62. R.J. White, J. Nucl. Mater. 325, 61 (2004) [CrossRef] [Google Scholar]
  63. R.J. White, R.C. Corcoran, P.J. Barnes, NEA-1705 IFPE/CAGR-UOX-SWELL: Fuel swelling data obtained from the AGR/Halden ramp test program. OECD Nuclear Energy Agency, Paris, France, 2006 [Google Scholar]
  64. M.S. Veshchunov, J. Nucl. Mater. 374, 44 (2008) [CrossRef] [Google Scholar]
  65. G. Pastore, L. Luzzi, V.D. Marcello, P. van Uffelen, Nucl. Eng. Des. 256, 75 (2013) [CrossRef] [Google Scholar]
  66. D. Hull, D.E. Rimmer, Philos. Mag. 4, 673 (1959) [CrossRef] [Google Scholar]
  67. R. Raj, M.F. Ashby, Acta Metall. 23, 653 (1975) [CrossRef] [Google Scholar]
  68. M.V. Speight, W. Beeré, Metal Sci. 9, 190 (1975) [CrossRef] [Google Scholar]
  69. G.I. Reynolds, W.B. Beeré, P.T. Sawbridge, J. Nucl. Mater. 41, 112 (1971) [CrossRef] [Google Scholar]
  70. T. Kogai, J. Nucl. Mater. 244, 131 (1997) [CrossRef] [Google Scholar]
  71. E.E. Gruber, J. Nucl. Mater. 110, 223 (1982) [CrossRef] [Google Scholar]
  72. M.R. Hayns, M.W. Finnis, Eur. Appl. Res. Rep. Nucl. Sci. Technol. 1, 255 (1979) [Google Scholar]
  73. J.R. Matthews, M.H. Wood, J. Nucl. Mater. 91, 241 (1980) [CrossRef] [Google Scholar]
  74. T. Kogai, K. Ito, Y. Iwano, J. Nucl. Mater. 158, 64 (1988) [CrossRef] [Google Scholar]
  75. P. van Uffelen in 2000 International Topical Meeting on Light Water Reactor Fuel Performance (American Nuclear Society, Park City, UT, USA, 2000), pp. 356–368 [Google Scholar]
  76. N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969) [NASA ADS] [CrossRef] [Google Scholar]
  77. P.C. Millett, Comp. Mater. Sci. 53, 31 (2012) [CrossRef] [Google Scholar]
  78. D. Sabogal-Suarez, J.D. Alzate-Cardona, E. Restrepo-Parra, J. Nucl. Mater. 475, 81 (2016) [CrossRef] [Google Scholar]
  79. P. van Uffelen Contribution to the modelling of fission gas release in light water reactor fuel. Thesis BLG-907, Université de Liège, Belgium, 2002 [Google Scholar]
  80. T. Kogai, Y. Iwano, J. Nucl. Sci. Technol. 27, 1017 (1990) [CrossRef] [Google Scholar]
  81. L.O. Jernkvist, To appear in Prog. Nucl. Energy [Google Scholar]
  82. P. Chakraborty, M.R. Tonks, G. Pastore, J. Nucl. Mater. 452, 95 (2014) [CrossRef] [Google Scholar]
  83. T.L. Anderson, Fracture mechanics: Fundamentals and applications, 3rd edn. (CRC Press, Boca Raton, FL, USA, 2005) [CrossRef] [Google Scholar]
  84. D. Baron, M. Kinoshita, P. Thevenin, R. Largenton, Nucl. Eng. Technol. 41, 199 (2009) [CrossRef] [Google Scholar]
  85. V.V. Rondinella, T. Wiss, Mater. Today 13, 24 (2010) [CrossRef] [Google Scholar]
  86. T. Wiss, V.V. Rondinella, R.J.M. Konings, D. Staicu, D. Papaioannou, S. Bremier, P. Pöml, O. Benes, J.Y. Colle, P. van Uffelen, A. Schubert, F. Cappia, M. Marchetti, D. Pizzocri, F. Jatuff, W. Goll, T. Sonoda, A. Sasahara, S. Kitajima, M. Kinoshita, Radiochim. Acta 105, 893 (2017) [CrossRef] [Google Scholar]
  87. C.T. Walker, J. Nucl. Mater. 275, 56 (1999) [CrossRef] [Google Scholar]
  88. K. Nogita, K. Une, M. Hirai, K. Ito, K. Ito, Y. Shirai, J. Nucl. Mater. 248, 196 (1997) [CrossRef] [Google Scholar]
  89. K. Une, M. Hirai, K. Nogita, T. Hosokawa, Y. Suzawa, S. Shimizu, Y. Etoh, J. Nucl. Mater. 278, 54 (2000) [CrossRef] [Google Scholar]
  90. Y. Tsukuda, Y. Kosaka, T. Kido, S. Doi, T. Sendo, P. Gonzales, J.M. Alonso, in ENS TopFuel 2003 (European Nuclear Society, Wurzburg, Germany, 2003) [Google Scholar]
  91. J. Noirot, Y. Pontillon, S. Yagnik, J.A. Turnbull, J. Nucl. Mater. 462, 77 (2015) [CrossRef] [Google Scholar]
  92. M. Mogensen, J.H. Pearce, C.T. Walker, J. Nucl. Mater. 264, 99 (1999) [CrossRef] [Google Scholar]
  93. J. Noirot, L. Desgranges, J. Lamontagne, J. Nucl. Mater. 372, 318 (2008) [CrossRef] [Google Scholar]
  94. J. Noirot, I. Aubrun, L. Desgranges, K. Hanifi, J. Lamontagne, B. Pasquet, C. Valot, P. Blanpain, H. Cognon, Nucl. Eng. Technol. 41, 155 (2009) [CrossRef] [Google Scholar]
  95. J. Noirot, Y. Pontillon, S. Yagnik, J.A. Turnbull, T. Tverberg, J. Nucl. Mater. 446, 163 (2014) [CrossRef] [Google Scholar]
  96. J. Spino, D. Papaioannou, J.P. Glatz, J. Nucl. Mater. 328, 67 (2004) [CrossRef] [Google Scholar]
  97. J. Spino, A.D. Stalios, H.S. Cruz, D. Baron, J. Nucl. Mater. 354, 66 (2006) [CrossRef] [Google Scholar]
  98. R. Restani, M. Horvath, W. Goll, J. Bertsch, D. Gavillet, A. Hermann, M. Martin, C.T. Walker, J. Nucl. Mater. 481, 88 (2016) [CrossRef] [Google Scholar]
  99. K. Une, K. Nogita, Y. Suzawa, K. Hayashi, K. Ito, Y. Etoh, in 2000 International Topical Meeting on Light Water Reactor Fuel Performance (American Nuclear Society, Park City, UT, USA, 2000), pp. 775–785 [Google Scholar]
  100. K. Une, K. Nogita, T. Shiratori, K. Hayashi, J. Nucl. Mater. 288, 20 (2001) [CrossRef] [Google Scholar]
  101. L.O. Jernkvist, A.R. Massih, Models for fuel rod behaviour at high burnup. Report 2005:41, Swedish Nuclear Power Inspectorate (SKI), Stockholm, Sweden, 2004. Available at: www.ssm.se [Google Scholar]
  102. J. Rest, J. Nucl. Mater. 326, 175 (2004) [CrossRef] [Google Scholar]
  103. L. Holt, A. Schubert, P. van Uffelen, C.T. Walker, E. Fridman, T. Sonoda, J. Nucl. Mater. 452, 166 (2014) [CrossRef] [Google Scholar]
  104. M. Kinoshita, T. Sonoda, S. Kitajima, A. Sasahara, T. Kameyama, T. Matsumura, E. Kolstad, V.V. Rondinella, C. Ronchi, J.P. Hiernaut, T. Wiss, F. Kinnart, J. Ejton, D. Papaioannou, H. Matzke, in 2004 International Meeting on LWR Fuel Performance (American Nuclear Society, Orlando, FL, USA, 2004), pp. 207–213 [Google Scholar]
  105. G. Khvostov, K. Mikityuk, M.A. Zimmermann, Nucl. Eng. Des. 241, 2983 (2011) [CrossRef] [Google Scholar]
  106. C.T. Walker, S. Bremier, S. Portier, R. Hasnaoui, W. Goll, J. Nucl. Mater. 393, 212 (2009) [CrossRef] [Google Scholar]
  107. L. Gao, B. Chen, Z. Xiao, S. Jiang, J. Yu, Nucl. Eng. Des. 260, 11 (2013) [CrossRef] [Google Scholar]
  108. J. Spino, J. Rest, W. Goll, C.T. Walker, J. Nucl. Mater. 346, 131 (2005) [CrossRef] [Google Scholar]
  109. F. Cappia, D. Pizzocri, A. Schubert, P. van Uffelen, G. Paperini, D. Pellottiero, R. Macian-Juan, V.V. Rondinella, J. Nucl. Mater. 480, 138 (2016) [CrossRef] [Google Scholar]
  110. H.X. Xiao, C.S. Long, Nucl. Eng. Techn. 48, 1002 (2016) [Google Scholar]
  111. K. Lassmann, C.T. Walker, J. van de Laar, F. Lindström, J. Nucl. Mater. 226, 1 (1995) [CrossRef] [Google Scholar]
  112. F. Lemoine, D. Baron, P. Blanpain, in Proceedingsof 2010 LWR Fuel Performance/TopFuel/WRFPM (American Nuclear Society, Orlando, FL, USA, 2010), pp. 539–551 [Google Scholar]
  113. P. Blair, A. Romano, C. Hellwig, R. Chawla, J. Nucl. Mater. 350, 232 (2006) [CrossRef] [Google Scholar]
  114. D. Pizzocri, F. Cappia, L. Luzzi, G. Pastore, V.V. Rondinella, P. van Uffelen, J. Nucl. Mater. 487, 23 (2017) [CrossRef] [Google Scholar]
  115. J.O. Barner, M.E. Cunningham, M.D. Freshley, D.D. Lanning, Nucl. Technol. 102, 210 (1993) [CrossRef] [Google Scholar]
  116. L.C. Bernard, J.L. Jacoud, P. Vesco, J. Nucl. Mater. 302, 125 (2002) [CrossRef] [Google Scholar]
  117. C.B. Lee, D.H. Kim, Y.M. Kim, Y.S. Yang, S.K. Kim, Y.H. Jung, Y.B. Chun, H.S. Seo, in 2004 International Meeting on LWR Fuel Performance (American Nuclear Society, Orlando, FL, USA, 2004), pp. 200–206 [Google Scholar]
  118. K. Une, S. Kashibe, K. Hayashi, J. Nucl. Sci. Technol. 39, 668 (2002) [CrossRef] [Google Scholar]
  119. A. Romano, M.I. Horvath, R. Restani, J. Nucl. Mater. 361, 62 (2007) [CrossRef] [Google Scholar]
  120. P. Blair, Modelling of fission gas behaviour in high burnup nuclear fuel. Thesis no 4084, École polytechnique fédérale de Lausanne, Switzerland, 2008 [Google Scholar]
  121. M. Lemes, A. Soba, A. Denis, J. Nucl. Mater. 456, 174 (2015) [CrossRef] [Google Scholar]
  122. Y.H. Koo, B.H. Lee, J.S. Cheon, D.S. Sohn, J. Nucl. Mater. 295, 213 (2001) [CrossRef] [Google Scholar]
  123. G.W. Greenwood, A.J.E. Foreman, D.E. Rimmer, J. Nucl. Mater. 1, 305 (1959) [CrossRef] [Google Scholar]
  124. K. Nogita, K. Une, J. Nucl. Mater. 226, 302 (1995) [CrossRef] [Google Scholar]
  125. M.D. Rintoul, S. Torquato, J. Phys. A: Math. Gen. 30, L585 (1997) [CrossRef] [Google Scholar]
  126. L.J. Siefken, E.W. Coryell, E.A. Harvego, J.K. Hohorst, SCDAP/RELAP5/MOD 3.3 code manual, MATPRO - A library of materials properties for light water reactor accident analysis. Report NUREG/CR-6150, Vol. 4, Rev. 2, U.S. Nuclear Regulatory Commission, Washington, DC, USA, 2001 [Google Scholar]
  127. G.T. Lawrence, J. Nucl. Mater. 71, 195 (1978) [CrossRef] [Google Scholar]
  128. G.L. Reynolds, B. Burton, J. Nucl. Mater. 82, 22 (1979) [CrossRef] [Google Scholar]
  129. K. Govers, S.E. Lemehov, M. Verwerft, J. Nucl. Mater. 405, 252 (2010) [CrossRef] [Google Scholar]
  130. K. Govers, S.E. Lemehov, M. Verwerft, Defect Diffus. Forum 323–325, 215 (2012) [CrossRef] [Google Scholar]
  131. M.R. Eslami, R.B. Hetnarski, J. Ignaczak, N. Noda, N. Sumi, Y. Tanigawa, in Theory of elasticity and thermal stresses: explanations, problems and solutions. Solid Mechanics and Its Applications (Springer, Dordrecht, Netherlands, 2013), Vol. 197 [Google Scholar]
  132. K.J. Geelhood, W.G. Luscher, FRAPCON-4.0: Integral assessment. Report PNNL-19418, Vol. 2, Rev. 2, Pacific Northwest National Laboratory, Richland, WA, USA, 2015 [Google Scholar]
  133. J. Karlsson, P. Beccau, P.M. et al., in Proceedings of TopFuel 2018 (European Nuclear Society, Prague, Czech Republic, 2018) [Google Scholar]
  134. M. Veshchunov, J. Stuckert, P. van Uffelen, W. Wiesenack, J. Zhang, in Proceedings of TopFuel 2018 (European Nuclear Society, Prague, Czech Republic, 2018) [Google Scholar]
  135. Fuel modelling in accident conditions (FUMAC): Final report of a coordinated research project CRP T12028 (2014−2018). Report IAEA-TECDOC, Vol. 1, International Atomic Energy Agency, Vienna, Austria, 2019 [Google Scholar]
  136. International fuel performance experiments (IFPE) database. OECD Nuclear Energy Agency, Paris, France, 2019 [Google Scholar]
  137. J. Papin, B. Cazalis, J.M. Frizonnet, J. Desquines, F. Lemoine, V. Georgenthum, F. Lamare, M. Petit, Nucl. Technol. 157, 230 (2007) [CrossRef] [Google Scholar]
  138. M. Petit, O. Marchand, F. Barre, P. Giordano, in Fuel behaviour and modelling under severe transient and loss of coolant accident (LOCA) conditions, Mito, Japan, Oct. 18-21, 2011 (International Atomic Energy Agency, Vienna, Austria, 2011), IAEA-TECDOC-CD-1709, pp. 25–42 [Google Scholar]
  139. Pressurized water reactor control rod ejection and boiling water reactor control rod drop accidents. Draft Regulatory Guide 1327, U.S. Nuclear Regulatory Commission, Washington, DC, USA, 2019 [Google Scholar]
  140. V. Brankov, G. Khvostov, K. Mikityuk, A. Pautz, R. Restani, S. Abolhassani, G. Ledergerber, W. Wiesenack, Nucl. Eng. Des. 305, 559 (2016) [CrossRef] [Google Scholar]
  141. L.O. Jernkvist, Nucl. Eng. Des. 176, 273 (1997) [CrossRef] [Google Scholar]
  142. V. Guicheret-Retel, F. Trivaudey, M.L. Boubakar, P. Thevenin, Nucl. Eng. Des. 232, 249 (2004) [CrossRef] [Google Scholar]
  143. B. Michel, J. Sercombe, G. Thouvenin, R. Chatelet, Eng. Fract. Mech. 75, 3581 (2008) [CrossRef] [Google Scholar]
  144. N. Marchal, C. Campos, C. Garnier, Comp. Mater. Sci. 45, 821 (2009) [CrossRef] [Google Scholar]
  145. R.L. Williamson, D.A. Knoll, in 20th International Conference on Structural Mechanics in Reactor Technology (SMiRT-20) (Espoo, Finland, 2009) [Google Scholar]
  146. R. Mella, M.R. Wenman, J. Nucl. Mater. 467, 58 (2015) [CrossRef] [Google Scholar]
  147. A.G. Evans, R.W. Davidge, J. Nucl. Mater. 33, 249 (1969) [CrossRef] [Google Scholar]
  148. T.R.G. Kutty, K.N. Chandrasekharan, J.P. Panakkal, J.K. Ghosh, J. Mater. Sci. Lett. 6, 260 (1987) [CrossRef] [Google Scholar]
  149. J.M. Gatt, J. Sercombe, I. Aubrun, J.C. Menard, Eng. Fail. Anal. 47, 299 (2015) [CrossRef] [Google Scholar]
  150. P.V. Nerikar, K. Rudman, T.G. Desai, D. Byler, C. Unal, K.J. McClellan, S.R. Phillpot, S.B. Sinott, P. Peralta, B.P. Uberuaga, C.R. Stanek, J. Am. Ceram. Soc. 94, 1893 (2011) [CrossRef] [Google Scholar]
  151. Y. Zhang, P.C. Millett, M.R. Tonks, X.M. Bai, S.B. Biner, J. Nucl. Mater. 452, 296 (2014) [CrossRef] [Google Scholar]
  152. R.F. Canon, J.T.A. Roberts, R.J. Beals, J. Am. Ceram. Soc. 54, 105 (1971) [CrossRef] [Google Scholar]
  153. J.T.A. Roberts, Y. Ueda, J. Am. Ceram. Soc. 55, 117 (1972) [CrossRef] [Google Scholar]
  154. T. Tachibana, H. Furuya, M. Koizumi, J. Nucl. Sci. Technol. 16, 266 (1979) [CrossRef] [Google Scholar]
  155. M. Oguma, J. Nucl. Sci. Technol. 19, 1005 (1982) [CrossRef] [Google Scholar]
  156. S. Ravel, G. Eminet, E. Muller, L. Caillot, in Fission Gas Behaviour in Water Reactor Fuels - Seminar Proceedings (OECD Nuclear Energy Agency, Cadarache, France, 2000), pp. 347–356 [Google Scholar]
  157. Y. Pontillon, M.P. Ferroud-Plattet, D. Parrat, S. Ravel, G. Ducros, C. Struzik, I. Aubrun, G. Eminet, J. Lamontagne, J. Noirot, A. Harrer, in 2004 International Meeting on LWR Fuel Performance (American Nuclear Society, Orlando, FL, USA, 2004), pp. 490–499 [Google Scholar]
  158. G. Pastore, D. Pizzocri, C. Rabiti, T. Barani, P. van Uffelen, L. Luzzi, J. Nucl. Mater. 509, 687 (2018) [CrossRef] [Google Scholar]
  159. J.M. Barsom, J. Am. Ceram. Soc. 51, 75 (1968) [CrossRef] [Google Scholar]
  160. J. Arborelius, K. Backman, L. Hallstadius, M. Limbäck, J. Nilsson, B. Rebensdorff, G. Zhou, K. Kitano, R. Löfström, G. Rönnberg, J. Nucl. Sci. Technol. 43, 967 (2006) [CrossRef] [Google Scholar]
  161. C. Delafoy, P. Dewes, in TopFuel 2006 (European Nuclear Society, Salamanca, Spain, 2006), pp. 487–491 [Google Scholar]
  162. Y.H. Koo, J.Y. Oh, B.H. Lee, Y.W. Tahk, K.W. Song, J. Nucl. Mater. 405, 33 (2010) [CrossRef] [Google Scholar]
  163. M. Flanagan, P. Askeljung, A. Puranen, Post-test examination results from integral, high-burnup, fueled LOCA tests at Studsvik nuclear laboratory. Report NUREG-2160, U.S. Nuclear Regulatory Commission, Washington, DC, USA, 2013 [Google Scholar]
  164. H.X. Xiao, C.S. Long, Chin. Phys. B 23, 020502 (2014) [CrossRef] [Google Scholar]
  165. I.R. Brearley, D.A. Macinnes, J. Nucl. Mater. 95, 239 (1980) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.