Issue
EPJ Nuclear Sci. Technol.
Volume 5, 2019
Progress in the Science and Technology of Nuclear Reactors using Molten Salts
Article Number 12
Number of page(s) 9
Section Design of components
DOI https://doi.org/10.1051/epjn/2019032
Published online 11 November 2019
  1. K. Furukawa, L.B. Erbay, A. Aykol, A study on a symbiotic thorium breeding fuel-cycle: THORIMS-NES through FUJI, Energy Convers. Manag. 63 , 51 (2012) [CrossRef] [Google Scholar]
  2. K. Furukawa, K. Mitachi, S.E. Chigrinov, Y. Kato, A. Lecoco, L.B. Erbay, Rational Pu-disposition for 233 U-production by THORIMS-NES (Thorium Molten-Salt Nuclear Energy Synergetics), International Atomic Energy Agency Technical Document IAEA − TECDOC, 840, pp. 169–181, 1995 [Google Scholar]
  3. K. Furukawa et al., A road map for the realization of global-scale thorium breeding fuel cycle by single molten-fluoride flow, Energy Convers. Manag. 49, 1832 (2008) [CrossRef] [Google Scholar]
  4. K. Furukawa, L.B. Erbay, A study on a global scale symbiotic thorium breeding fueal cycle, in Proceedings Of The 2nd International Conference On Nuclear And Renevable Recources NURER2010 , 2010 , pp. 255–261 [Google Scholar]
  5. K. Furukawa, D.E. Graves, L.B. Erbay, M. Hron, Y. Kato, New sustainable secure nuclear ındustry based on Thorium Molten-Salt Nuclear Energy Synergetics (THORIMS-NES), Nuclear Power − Deployment, Operation and Sustainability (InTech Open, London, 2011) [Google Scholar]
  6. L.B. Erbay, Examining the power generation by the stirling heat engine combined with the Molten − Salt Reactor, in Proceedings Of International Symposium On Efficiency, Costs, Optimization, Simulation And Environmental Aspects Of Energy Systems: ECOS'99 , 1999 , pp. 429–434 [Google Scholar]
  7. S. Cantor, Density and viscosity of several molten fluoride mixtures, ORNL-TM-4308, 1973 [CrossRef] [Google Scholar]
  8. D. Scott, A.G. Grindell, Components and systems development for molten-salt breeder reactors, ORNL-TM-1855, 1967 [CrossRef] [Google Scholar]
  9. J.A. Lane, H.G. Macpherson, F. Maslan, Fluid fuel reactors (Addison-Wesley Company, Inc., Boston, 1958) [Google Scholar]
  10. R.E. Macpherson, Gas cooled molten salt heat exchanger − design study, ORNL-2605, 1958 [CrossRef] [Google Scholar]
  11. C.W. Forsberg, Reactors with molten salts: options and missions, The 2004 Frédéric JOLIOT & Otto HAHN Summer School − FJ/OH 2004, 2004 [Google Scholar]
  12. R.J. Kedl, C.K. McGlothlan, Tube vibration in MSRE primary heat exchanger, ORNL-TM-2098, 1968 [CrossRef] [Google Scholar]
  13. C.E. Bettis et al., Design study of a heat-exchange system for one MSBR concept, ORNL-TM-1545, 1967 [Google Scholar]
  14. A.P. Fraas, A new approach to the design of design of steam generators for molten salt reactor power plants, ORNL-TM- 2953, 1971 [CrossRef] [Google Scholar]
  15. F.H. Clark, O.W. Burke, Dynamic analysis of a salt supercritical water heat exchanger and trottle used with MSBR, ORNL-TM-2405, 1969 [Google Scholar]
  16. A.P. Fraas, M.E. LaVerne, Parametric survey of the effects of major parametres on the design of fuel-to-ınert-salt heat exchangers for the MSBR, ORNL-TM-2952, 1971 [Google Scholar]
  17. L.B. Erbay, Knowhow Of Th-MSR heat exchange system, in 11th International Conference On Sustainable Energy Technologies , 2012 [Google Scholar]
  18. V. Ariu, Heat exchanger analysis for innovative molten salt fast reactor, Master Thesis, Paul Scherrer Institute, 2014 [Google Scholar]
  19. Z. Pavel, V. Vaclav, Various methods to improve heat transfer in exchangers, EPJ Web of Conferences 92 , 02119 (2015) [CrossRef] [EDP Sciences] [Google Scholar]
  20. Project No: 249696, Final Report − EVOL project, 2014 [Google Scholar]
  21. J. Serp et al., The molten salt reactor (MSR) in generation IV: overview and perspectives, Prog. Nucl. Energy 77, 308 (2014) [CrossRef] [Google Scholar]
  22. M. Aufiero et al., Calculating the effective delayed neutron fraction in the Molten Salt Fast Reactor: Analytical, deterministic and Monte Carlo approaches, Ann. Nucl. Energy 65, 78 (2014) [CrossRef] [Google Scholar]
  23. S. Wang et al., A passive decay heat removal system for emergency draining tanks of molten salt reactors, Nucl. Eng. Des. 341, 423 (2019) [CrossRef] [Google Scholar]
  24. F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat and Mass Transfer (John Wiley ' Sons, Inc., 2007) [Google Scholar]
  25. E. Merle-Lucotte et al., Preliminary design assessment of the Molten Salt Fast Reactor, in Proceedings of the ENC2012-Advanced Reactors , 2012 , pp. 17–26 [Google Scholar]
  26. V. Ignatiev, A. Surenkov, Material performance in molten salts (Elsevier Inc., Amsterdam, 2012) [Google Scholar]
  27. V. Ignatiev, Materials and metals in MSR, in MSR Summer School, July 2–4, Lecco, Italy , 2017 [Google Scholar]
  28. Principle Features of Hastelloy-N. Available: https://www.haynesintl.com/alloys/alloy-portfolio_/Corrosion-resistant- Alloys/hastelloy-n-alloy [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.