Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 5, 2019
Article Number 10
Number of page(s) 11
DOI https://doi.org/10.1051/epjn/2019025
Published online 05 November 2019
  1. E. Wild, K.J. Mack, M. Gegenheimer, Liquid Metal Tribology in Fast Breeder Reactors (Kernforschungszentrum, Karlsruhe, 1984) [Google Scholar]
  2. R.N. Johnson, R.C. Aungst, N.J. Hoffman, M.G. Cowgill, G.G. Whitlow, W.L. Wilson, Development of low friction materials for LMFBR components, in M.H. Cooper (Ed.), Proceeding in First International Conference on Liquid Metal Technology in Energy Production, 1976, Champion, p. 122 [Google Scholar]
  3. E. Wild, K.J. Mack, Friction and wear in liquid-metal systems: compatibility problems of test results obtained from different test facilities, in M.H. Cooper (Ed.), Proceeding in First International Conference on Liquid Metal Technology in Energy Production, 1976, Champion, p. 131 [Google Scholar]
  4. G.A. Whitlow, W.L. Wilson, T.A. Galioto, R.L. Miller, S.L. Schrock, N.J. Hoffman, J.J. Droher. R.N. Johnson, Corrosion and tribological investigations of chromium carbide coatings for sodium cooled reactor applications, in M.H. Cooper (Ed.), Proceeding in First International Conference on Liquid Metal Technology in Energy Production, 1976, Champion, p. 138 [Google Scholar]
  5. S.J. Radcliffe, Friction coefficient of AISI 316 stainless steel in impure and in zirconium hot-trapped sodium, in: D. Dowson (Ed.), Proceeding of the 7th Leeds-Lyon Symposium on Tribology, Institute of Tribology, p. 64 [Google Scholar]
  6. H. Borgstedt, C.K. Mathews, Applied Chemistry of the Alkali Metals (Kluwer Academic/Plenum Publishers, Dordrecht, 1987) [Google Scholar]
  7. J. Guidez, B. Bonin, Réacteurs nucléaires à caloporteur sodium (2014) [Google Scholar]
  8. J-L. Courouau, F. Balbaud-Célérier, V. Lorentz, T. Dufrenoy, Corrosion by liquid sodium of materials for sodium fast reactors: the CORRONa testing device, in Proceeding in International Congress on Advances in Nuclear Power Plants (ICAPP '11), Nice, France, 2011, p. 2 [Google Scholar]
  9. J. Guidez, Phénix: The experience feedback (EDP Sciences, Paris, 2013) [Google Scholar]
  10. G. Rolland, C. Cossange, A. Andrieu, M. Blat-Yrieix, P. Sallamand, M. Duband, C. Blanc, P. Aubry, F. Rouillard, T. Marlaud, Coating toughness estimation through a Laser Shock Testing in Ni-Cr-B-Si-C Coatings, Mater. Sci. Forum 941, 1886 (2018) [Google Scholar]
  11. H. Kumar, V. Ramakrishnan, S.K. Albert, C. Meikandamurthy, B.V.R. Tata, A.K. Bhaduri, High Temperature wear and friction behaviour of 15Cr-15Ni-2Mo titanium-modified austenitic stainless steel in liquid sodium, Wear 270, 1 (2010) [Google Scholar]
  12. A.K. Badhuri, R. Indira, S.K. Albert, B.P.S. Rao, S.C. Jain, S. Asokkumar, Selection of hardfacing material for component of the Indian Prototype Fast Breeder Reactor, J. Nucl. Mater. 334, 109 (2004) [Google Scholar]
  13. H.U. Borgstedt, G. Frees, G. Drechsler, Korrosions reaktionen sauerstoffempfindlicher Metalle in flüssigem Natrium mit Oxidgehalten. I. Reaktionen von Zirkonium und Zircaloy2, Werstoffe und Korrosion 21, 568 (1970) [Google Scholar]
  14. H.U. Borgstedt, G. Frees, H. Schneider, Corrosion and creep of pressurized stainless-steel tubes in liquid-sodium at 873 and 973 K, Nucl. Technol. 34, 290 (1977) [Google Scholar]
  15. H.U. Borgstedt, C. Guminski, IUPAC-NIST Solubility Data Series. 75. Nonmetals in Liquid Alkali Metals, J. Phys. Chem. Ref. Data 30, 835 (2001) [Google Scholar]
  16. J. Crank, The Mathematics of Diffusion, 2nd edn. (Oxford Science Publications, Oxford, 1975) [Google Scholar]
  17. N.P. Bhat, H.U. Borgstedt, Corrosion behaviour of structural materials in sodium influenced by formation of ternary oxides, Werkstoffe und Korrosion 39, 115 (1988) [Google Scholar]
  18. A.M. Azad, O.M. Sreedharan, J.B. Gnanamoorthy, A novel determination of thermodynamic activities of metals in an AISI 316 stainless steel by a metastable emf method, J. Nucl. Mater. 144, 94 (1987) [Google Scholar]
  19. J.D. Noden, A general equation for the solubility of oxygen in liquid sodium, J. Br. Nucl. Energy Soc. 12, 57 (1973) [Addendum J. Br. Nucl. Energy Soc. 12, 329 (1973)] [Google Scholar]
  20. E. Yoshida, Y. Hirakawa, S. Kano, I. Nihei, In-sodium tribological study of cobalt-free hard facing materials for contact and sliding parts of FBR components, in SFEN, Proceeding in the Fourth International Conference on Liquid Metal Engineering and Technology, Avignon, 1998, paper 502 [Google Scholar]
  21. S. Kano et al., Investigation of tribological phenomena in sodium for LMFBR, in J.M. Dahlke (Ed.), Proceeding in the Second International Conference on Liquid Metal and Technology in Energy Production, Richland 1980, paper 3–60 [Google Scholar]
  22. M.G. Nicholas, I.W. Cavell, The formation of chromite on AISI 316 and other chromium containing alloys, in J.M. Dahlke (Ed.), Proceeding in the Second International Conference on Liquid Metal Technology in Energy Production, Richland, 1980, paper 3–35 [Google Scholar]
  23. I.W. Cavell, M.G. Nicholas, Some observations concerned with the formation of chromite on AISI 316 exposed to oxygenated sodium, J. Nucl. Mater. 95, 129 (1980) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.