Issue |
EPJ Nuclear Sci. Technol.
Volume 5, 2019
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 29 | |
DOI | https://doi.org/10.1051/epjn/2019030 | |
Published online | 08 November 2019 |
https://doi.org/10.1051/epjn/2019030
Regular Article
Modelling of fine fragmentation and fission gas release of UO2 fuel in accident conditions
Quantum Technologies AB,
Uppsala Science Park,
75183
Uppsala,
Sweden
* e-mail: loje@quantumtech.se
Received:
18
June
2019
Received in final form:
23
August
2019
Accepted:
6
September
2019
Published online: 8 November 2019
In reactor accidents that involve rapid overheating of oxide fuel, overpressurization of gas-filled bubbles and pores may lead to rupture of these cavities, fine fragmentation of the fuel material, and burst-type release of the cavity gas. Analytical rupture criteria for various types of cavities exist, but application of these criteria requires that microstructural characteristics of the fuel, such as cavity size, shape and number density, are known together with the gas content of the cavities. In this paper, we integrate rupture criteria for two kinds of cavities with models that calculate the aforementioned parameters in UO2 LWR fuel for a given operating history. The models are intended for implementation in engineering type computer programs for thermal-mechanical analyses of LWR fuel rods. Here, they have been implemented in the FRAPCON and FRAPTRAN programs and validated against experiments that simulate LOCA and RIA conditions. The capabilities and shortcomings of the proposed models are discussed in light of selected results from this validation. Calculated results suggest that the extent of fuel fragmentation and transient fission gas release depends strongly on the pre-accident fuel microstructure and fission gas distribution, but also on rapid changes in the external pressure exerted on the fuel pellets during the accident.
© L.O. Jernkvist, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.