Issue
EPJ Nuclear Sci. Technol.
Volume 10, 2024
Status and advances of Monte Carlo codes for particle transport simulation
Article Number 26
Number of page(s) 11
DOI https://doi.org/10.1051/epjn/2024028
Published online 20 December 2024
  1. E. Brun, F. Damian, C.M. Diop, E. Dumonteil, F.-X. Hugot, C. Jouanne, Y.K. Lee, F. Malvagi, A. Mazzolo, O. Petit, J.C. Trama, T. Visonneau, A. Zoia, TRIPOLI-4, CEA, EDF and AREVA reference Monte Carlo code, Ann. Nucl. Energy 82, 151 (2015) [CrossRef] [Google Scholar]
  2. F.-X. Hugot, A. Jinaphanh, C. Jouanne, C. Larmier, Y.K. Lee, D. Mancusi, O. Petit, T. Visonneau, A. Zoia, Overview of the TRIPOLI-4 Monte Carlo code, version 12, EPJ Nucl. Sci. Technol. 10, 17 (2024) [CrossRef] [EDP Sciences] [Google Scholar]
  3. W. Monange, A. Bardelay, New capabilities of the MORET 6 Monte Carlo neutron transport code, in PHYSOR 2022: International Conference on Physics of Reactors (ANS - American Nuclear Society, Pittsburg, PA, USA, 2022) [Google Scholar]
  4. W. Monange, New features of the Monte Carlo neutron transport code MORET 6, submitted to EPJ Nucl. Sci. Technol. [Google Scholar]
  5. D. Kelly et al., Analysis of select BEAVRS PWR benchmark cycle 1 results using MC21 and OpenMC, in PHYSOR2014, Kyoto, Japan (2014) [Google Scholar]
  6. D.P. Griesheimer, D.C. Carpenter, M.H. Stedry, Practical techniques for large-scale Monte Carlo reactor depletion calculatons, Prog. Nucl. Energy 101, 409 (2017) [CrossRef] [Google Scholar]
  7. T.D.C. Nguyen, H. Lee, S. Choi, D. Lee, MCS/TH1D analysis of VERA whole-core multi-cycle depletion problems, Ann. Nucl. Energy 139, 107271 (2020) [CrossRef] [Google Scholar]
  8. V.H. Sanchez-Espinoza, L. Mercatali, J. Leppänen, E. Hoogenboom, R. Vocka, J. Dufek, The McSAFE project - high-performance Monte Carlo based methods for safety demonstration: from proof of concept to industry applications, in EPJ Web Conf. PHYSOR2020 - International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future (EDP Sciences, 2021), Vol. 247, p. 06004 [Google Scholar]
  9. P.K. Romano, C.J. Josey, A.E. Johnson, J. Liang, Depletion capabilities in the OpenMC Monte Carlo particle transport code, Ann. Nucl. Energy 152, 107989 (2021) [CrossRef] [Google Scholar]
  10. M. García, R. Tuominen, A. Gommlich, D. Ferraro, V. Valtavirta, U. Imke, P. Van Uffelen, L. Mercatali, V. Sanchez-Espinoza, J. Leppänen, S. Kliem, A Serpent2-SUBCHANFLOW-TRANSURANUS coupling for pin-by-pin depletion calculations in light water reactors, Ann. Nucl. Energy 139, 107213 (2020) [CrossRef] [Google Scholar]
  11. D. Ferraro, M. García, V. Valtavirta, U. Imke, R. Tuominen, J. Leppänen, V. Sanchez-Espinoza, Serpent/SUBCHANFLOW pin-by-pin coupled transient calculations for a PWR minicore, Ann. Nucl. Energy 137, 107090 (2020) [CrossRef] [Google Scholar]
  12. D. Mancusi, M. Faucher, A. Zoia, Monte Carlo simulations of the SPERT III E-core transient experiments, Eur. Phys. J. Plus, 137, 127 (2022) [CrossRef] [Google Scholar]
  13. J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: Status, development and applications in 2013, Ann. Nucl. Energy 82, 142 (2015) [CrossRef] [Google Scholar]
  14. P.K. Romano, N.E. Horelik, B.R. Herman, A.G. Nelson, B. Forget, K. Smith, OpenMC: A state-of-the-art Monte Carlo code for research and development, Ann. Nucl. Energy 82, 90 (2015) [CrossRef] [Google Scholar]
  15. H. Lee, W. Kim, P. Zhang, M. Lemaire, A. Khassenov, J. Yu, Y. Jo, J. Park, D. Lee, MCS - A Monte Carlo particle transport code for large-scale power reactor analysis, Ann. Nucl. Energy 139, 107276 (2020) [CrossRef] [Google Scholar]
  16. D.P. Griesheimer, D.F. Gill, B.R. Nease, T.M. Sutton, M.H. Stedry, P.S. Dobreff, D.C. Carpenter, T.H. Trumbull, E. Caro, H. Joo, D.L. Millman, MC21 v.6.0 - A continuous-energy Monte Carlo particle transport code with integrated reactor feedback capabilities, Ann. Nucl. Energy 82, 29 (2015) [CrossRef] [Google Scholar]
  17. E. Brun, S. Chauveau, F. Malvagi, PATMOS: A prototype Monte Carlo transport code to test high performance architectures, in International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, Jeju, Korea (2017) [Google Scholar]
  18. T. Chang, Evaluation of Programming Models for Manycore and/or Heterogeneous Architectures for Monte Carlo Neutron Transport Codes, Institut Polytechnique de Paris, 2020 [Google Scholar]
  19. H. Carter Edwards, C.R. Trott, D. Sunderland, Kokkos: Enabling manycore performance portability through polymorphic memory access patterns, J. Parallel Distrib. Comput. 74, 3202 (2014) [CrossRef] [Google Scholar]
  20. S. Chandrasekaran and G. Juckeland, editors, OpenACC for Programmers: Concepts and Strategies (Addison-Wesley, Boston) [Google Scholar]
  21. S. Cook, CUDA Programming: A Developer's Guide to Parallel Computing with GPUs (Elsevier, MK, Amsterdam, Boston, 2013) [Google Scholar]
  22. E. Brun, D. Defour, P. De Oliveira Castro, M. Istoan, D. Mancusi, E. Petit, A. Vaquet, A study of the effects and benefits of custom-precision mathematical libraries for HPC codes, IEEE Trans. Emerg. Top. Comput. 9, 1467 (2021) [CrossRef] [Google Scholar]
  23. J. Eduard Hoogenboom, W.R. Martin, B. Petrovic, Monte Carlo performance benchmark for detailed power density calculation in a full size reactor core benchmark specifications, in International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011) (CiteSeer, Rio de Janeiro, RJ, Brazil, 2011) [Google Scholar]
  24. S. Lahaye, A. Anne, R. Baron, T.-D. Huynh, A. Tsilanizara, New bateman equation solvers in MENDEL version 3.1, in International Conference on Nuclear Criticality Safety (ICNC) (2023) [Google Scholar]
  25. D.E. Cullen, C.R. Weisbin, Exact Doppler broadening of tabulated cross sections, Nucl. Sci. Eng. 60, 199 (1976) [CrossRef] [Google Scholar]
  26. TOP500 website, https://www.top500.org/system/179412 (visited on May 31, 2024) [Google Scholar]
  27. Message Passing Interface Forum, MPI: A message-passing interface standard version 4.1, 2023 [Google Scholar]
  28. R. Chandra, editor, Parallel Programming in OpenMP (Morgan Kaufmann Publishers, San Francisco, CA, 2001) [Google Scholar]
  29. C. Patricot, C3PO (Collaborative Code Coupling PlatfOrm), https://github.com/code-coupling/c3po [Google Scholar]
  30. SALOME website, http://www.salome-platform.org (visited on April 14, 2021) [Google Scholar]
  31. C. Patricot, THEDI: A multi-1D two-phase flow solver for neutronic codes, in ICAPP 2019 - International Congress on Advances in Nuclear Power Plants, Juan-les-Pins, France (2019) [Google Scholar]
  32. J.-C. Sublet, P. Ribon, M. Coste-Delclaux, CALENDF/2010: User manual, Technical report CEA-R-6277, CEA, France, 2011 [Google Scholar]
  33. D.W. Muir et al., The NJOY nuclear data processing system, version 2016, Technical report LA-UR-17-20093, Los Alamos National Laboratory, USA, 2019 [Google Scholar]
  34. G. Ferran, W. Haeck, M. Gonin, Development progress of the GAIA nuclear data processing software, Nucl. Data Sheets 118, 491 (2014) [CrossRef] [Google Scholar]
  35. M. Coste-Delclaux, C. Jouanne, C. Mounier, GALILÉE-1: Verification and processing system for evaluated data, in SNA+MC2024, Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo, Paris, France (2024) [Google Scholar]
  36. C. Larmier, M.A. Kowalski, A. Jinaphanh, V. Franchini, D.Q.D. Nguyen, F. Malvagi, D. Mancusi, A. Zoia, Preliminary code-to-code comparisons for the implementation of neutron and photon physics in the new Monte Carlo transport code TRIPOLI-5, in M&C 2023 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Niagara Falls, ON, Canada (2023) [Google Scholar]
  37. C. Montecchio, C. Larmier, D. Mancusi, A. Zoia, Benchmarking of probability tables with TRIPOLI-5, EPJ Web of Conferences 302, 07005 (2024) [CrossRef] [EDP Sciences] [Google Scholar]
  38. T.M. Sutton and F.B. Brown, Implementation of the Probability Table Method in a Continuous-Energy Monte Carlo Code System (United States, 1998) [Google Scholar]
  39. W. Rothenstein, Proof of the formula for the ideal gas scattering kernel for nuclides with strongly energy dependent scattering cross sections, Ann. Nucl. Energy 31, 9 (2004) [CrossRef] [Google Scholar]
  40. A. Zoia, E. Brun, C. Jouanne, F. Malvagi, Doppler broadening of neutron elastic scattering kernel in TRIPOLI-4, Nucl. Energy 54, 218 (2013) [CrossRef] [Google Scholar]
  41. J.L. Hodges, The significance probability of the SMIRNOV two-sample test, Eur. Phys. J. A 3, 469 (1958) [Google Scholar]
  42. A.J.M. Plompen, O. Cabellos, C. De Saint Jean, M. Fleming, A. Algora, M. Angelone, P. Archier, E. Bauge, O. Bersillon, A. Blokhin, F. Cantargi, A. Chebboubi, C. Diez, H. Duarte, E. Dupont, J. Dyrda, B. Erasmus, L. Fiorito, U. Fischer, D. Flammini, D. Foligno, M.R. Gilbert, J.R. Granada, W. Haeck, F.-J. Hambsch, P. Helgesson, S. Hilaire, I. Hill, M. Hursin, R. Ichou, R. Jacqmin, B. Jansky, C. Jouanne, M.A. Kellett, D.H. Kim, H.I. Kim, I. Kodeli, A.J. Koning, A. Konobeyev, A. Yu, S. Kopecky, B. Kos, A. Krása, L.C. Leal, N. Leclaire, P. Leconte, Y.O. Lee, H. Leeb, O. Litaize, M. Majerle, J.I. Márquez Damián, F. Michel-Sendis, R.W. Mills, B. Morillon, G. Noguère, M. Pecchia, S. Pelloni, P. Pereslavtsev, R.J. Perry, D. Rochman, A. Röhrmoser, P. Romain, P. Romojaro, D. Roubtsov, P. Sauvan, P. Schillebeeckx, K.H. Schmidt, O. Serot, S. Simakov, I. Sirakov, H. Sjöstrand, A. Stankovskiy, J.C. Sublet, P. Tamagno, A. Trkov, S. van der Marck, F. Álvarez-Velarde, R. Villari, T.C. Ware, K. Yokoyama, G. Žerovnik, The joint evaluated fission and fusion nuclear data library, JEFF-3.3, Eur. Phys. J. A 56, 181 (2020) [CrossRef] [Google Scholar]
  43. S. Holm, A simple sequentially rejective multiple test procedure, Scand. J. Stat. 6, 65 (1979) [Google Scholar]
  44. D.A. Brown, M.B. Chadwick, R. Capote, A.C. Kahler, A. Trkov, M.W. Herman, A.A. Sonzogni, Y. Danon, A.D. Carlson, M. Dunn, D.L. Smith, G.M. Hale, G. Arbanas, R. Arcilla, C.R. Bates, B. Beck, B. Becker, F. Brown, R.J. Casperson, J. Conlin, D.E. Cullen, M.A. Descalle, R. Firestone, T. Gaines, K.H. Guber, A.I. Hawari, J. Holmes, T.D. Johnson, T. Kawano, B.C. Kiedrowski, A.J. Koning, S. Kopecky, L. Leal, J.P. Lestone, C. Lubitz, J.I. Márquez Damián, C.M. Mattoon, E.A. McCutchan, S. Mughabghab, P. Navratil, D. Neudecker, G.P.A. Nobre, G. Noguere, M. Paris, M.T. Pigni, A.J. Plompen, B. Pritychenko, V.G. Pronyaev, D. Roubtsov, D. Rochman, P. Romano, P. Schillebeeckx, S. Simakov, M. Sin, I. Sirakov, B. Sleaford, V. Sobes, E.S. Soukhovitskii, I. Stetcu, P. Talou, I. Thompson, S. van der Marck, L. Welser-Sherrill, D. Wiarda, M. White, J.L. Wormald, R.Q. Wright, M. Zerkle, G. Žerovnik, Y. Zhu, ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148, 1 (2018) [CrossRef] [Google Scholar]
  45. D.E. Cullen, EPICS2014: Electron photon interaction cross sections, Technical report IAEANDS-218, International Atomic Energy Agency, 2015 [Google Scholar]
  46. J. Baró, J. Sempau, J.M. Fernández-Varea, F. Salvat, PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 100, 31 (1995) [CrossRef] [Google Scholar]
  47. D.E. Cullen, EPICS2023: August 2023 status report, Technical report IAEA-NDS-0242, International Atomic Energy Agency, 2023 [Google Scholar]
  48. T. Kaltiaisenaho, Photon transport physics in Serpent 2 Monte Carlo code, Comput. Phys. Commun. 252, 107143 (2020) [CrossRef] [Google Scholar]
  49. Y. Namito, S. Ban, H. Hirayama, Implementation of the Doppler broadening of a Compton-scattered photon into the EGS4 code, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 349, 489 (1994) [CrossRef] [Google Scholar]
  50. S.M. Seltzer, M.J. Berger, Bremsstrahlung spectra from electron interactions with screened atomic nuclei and orbital electrons, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 12, 95 (1985) [CrossRef] [Google Scholar]
  51. T.K. Tuyet, A. Jinaphanh, C. Jouanne, F. Gérardin, S. Lemaire, A. Zoia, Comparison of the TRIPOLI-4, DIANE, MCNP6 Monte Carlo codes on the Barber & George benchmark for photonuclear reactions, Nucl. Sci. Eng. 198, 319 (2024) [CrossRef] [Google Scholar]
  52. I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations, 1st edn. (CRC Press, 2018) [CrossRef] [Google Scholar]
  53. E. Woodcock, T. Murphy, P. Hemmings, S. Longworth, Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry, in Proc. Conf. Applications of Computing Methods to Reactor Problems (Argonne National Laboratory, 1965), Vol. 557 [Google Scholar]
  54. J. Leppänen, Performance of Woodcock delta-tracking in lattice physics applications using the Serpent Monte Carlo reactor physics burnup calculation code, Ann. Nucl. Energy 37, 715 (2010) [CrossRef] [Google Scholar]
  55. H. Belanger, C. Larmier, D. Mancusi, A. Zoia, Optimization of particle tracking methods for stochastic media, in PHYSOR2022, International Conference on the Physics of Reactors, Pittsburgh, USA (2022) [Google Scholar]
  56. R. Brun, F. Rademakers, ROOT - An object oriented data analysis framework, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 389, 81 (1997) [CrossRef] [Google Scholar]
  57. J. Kulesza et al., MCNP code version 6.3.0 theory & user manual. Technical report LA-UR-22-30006, Los Alamos National Laboratory, USA, 2022 [Google Scholar]
  58. F.-X. Hugot, Y.-K. Lee, A New prototype display tool for the Monte Carlo particle transport code TRIPOLI-4, Prog. Nucl. Sci. Technol. 2, 851 (2011) [CrossRef] [Google Scholar]
  59. Y.-K. Lee and F.-X. Hugot, TRIPOLI-4 Monte Carlo code verification and validation using T4G tool, in ICONE 31, 31st Int. Conf. on Nuclear Engineering, Prague, Czech Republic (2024) [Google Scholar]
  60. M. Faucher, Coupling between Monte Carlo neutron transport and thermal-hydraulics for the simulation of transients due to reactivity insertions, Ph.D. dissertation, Université Paris-Saclay, Paris, 2019 [Google Scholar]
  61. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G.J.N.I. Barrand, B.R. Beck, Recent developments in Geant4, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 835, 186 (2016) [Google Scholar]
  62. W. Jakob, J. Rhinelander, D. Moldovan, PYBIND11 - seamless operability between C++11 and python, https://github.com/pybind/pybind11 (2017) [Google Scholar]
  63. C.R. Harris, K. Jarrod Millman, S.J. Van Der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer, M.H. Van Kerkwijk, M. Brett, A. Haldane, J.F. Del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T.E. Oliphant, Array programming with NumPy, Nature 585, 357 (2020) [CrossRef] [PubMed] [Google Scholar]
  64. B.E. Granger and F. Pérez, Jupyter: Thinking and storytelling with code and data, Comput. Sci. Eng. 23, 7 (2021) [NASA ADS] [CrossRef] [Google Scholar]
  65. P.K. Romano, A.R. Siegel, Limits on the efficiency of event-based algorithms for Monte Carlo neutron transport, Nucl. Eng. Technol. 49, 1165 (2017) [CrossRef] [Google Scholar]
  66. E. Brun, A. Zoia, J.-C. Trama, S. Lahaye, Y. Nagaya, Inter-code comparison of TRIPOLI and MVP on the MCNP criticality validation suite, in ICNC-2015, International Conference on Nuclear Criticality Safety, Charlotte, USA (2015) [Google Scholar]
  67. Nuclear Energy Agency, International Criticality Safety Benchmark Evaluation Project Handbook (OECD), https://doi.org/10.1787/110ba6fc-en [Google Scholar]
  68. N.E. Horelik, B.R Herman, B. Forget, K. Smith, Benchmark for Evaluation and Validation of Reactor Simulations (BEAVRS), v1.0.1, in International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C), Sun Valley, ID, USA (2013) [Google Scholar]
  69. T. Albagami, P. Rouxelin, A. Abarca, D. Holler, L. Moloko, M. Avramova, K. Ivanov, A. Godfrey, S. Palmtag, TVA watts bar unit 1 multi-physics multi-cycle depletion benchmark version 2.3.3, Technical report NEA/EGMPEBV/DOC, The Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA), 2022 [Google Scholar]
  70. Nuclear Energy Agency, International Reactor Physics Evaluation Project Handbook (OECD), https://doi.org/10.1787/8d549c0f-en [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.