Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 10, 2024
Article Number 25
Number of page(s) 16
DOI https://doi.org/10.1051/epjn/2024026
Published online 19 December 2024
  1. G. Locatelli, C. Bingham, M. Mancini, Small modular reactors: A comprehensive overview of their economics and strategic aspects, Prog. Nucl. Energy 73, 75 (2014) [CrossRef] [Google Scholar]
  2. C.A. Lloyd, T. Roulstone, R.E. Lyons, Transport, constructability, and economic advantages of SMR modularization, Prog. Nucl. Energy 134, 103672 (2021) [CrossRef] [Google Scholar]
  3. IAEA, Advances in Small Modular Reactor Technology Developments, 2022 Edition, A Supplement to: IAEA Advanced Reactors Information System (ARIS), IAEA publications (2022) [Google Scholar]
  4. NEA, The NEA Small Modular Reactor Dashboard: Second Edition (OECD Publishing, Paris, 2024) [Google Scholar]
  5. J. Park, J. Kang, C. Hah, Reactivity Flattening for a Soluble Boron-Free Small Modular, Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea, 29, 2015 [Google Scholar]
  6. H. Yu, H. Ju, M. Wang, J. Zhang, S. Qiu, W. Tian, G.H. Su, Study of boron diffusion models and dilution accidents in nuclear reactor: A comprehensive review, Ann. Nucl. Energy 148, 107659 (2020) [CrossRef] [Google Scholar]
  7. S. Danrong, L. Qing, Q. Dong, D. Gaojian, Z. Chang, L. Song, X. Renjie, W. Xuedong, Key Technology of ACP100: Reactor Core and Safety Design, Nucl. Power Eng. 42, 1 (2021) [Google Scholar]
  8. X. Bin, CNNC’s ACP100 SMR: Technique Features and Progress in China, 13th INPRO Dialogue Forum on Legal and Institutional Issues in the Global Deployment of Small Modular Reactors, 18-21 October 2016, IAEA Headquarters Vienna Austria, 2016 [Google Scholar]
  9. R. Vuiart, M. Brovchenko, J. Taforeau, V. Jaiswal, E. Dumonteil, A Versatile methodology for reactor pressure vessel aging assessments, Nucl. Sci. Eng. 196, 455 (2022) [CrossRef] [Google Scholar]
  10. CEA, Les combustibles nucléaires, e-den, Une monographie de la Direction de l’énergie nucléaire. Éditions Le Moniteur, 2008. [Google Scholar]
  11. D. Pieck, Optimisation de l’utilisation du gadolinium comme poison consommable dans le combustible nucléaire: Vers un REP sans bore, Ph.D. thesis, Aix-Marseille Université, 2013 [Google Scholar]
  12. H. Grard, Physique, fonctionnement et sûreté des REP - le réacteur en production (EDP Sciences, 2014) [Google Scholar]
  13. P. Suk, O. Chvála, G. Ivan Maldonado, J. Frýbort, Simulation of a NuScale core design with the CASL VERA code, Nucl. Eng. Des. 371, 110956 (2021) [CrossRef] [Google Scholar]
  14. J.J. Ingremeau, M. Cordiez, Flexblue core design: optimisation of fuel poisoning for a soluble boron free core with full or half core refuelling, EPJ Nucl. Sci. Technol. 1, 11 (2015) [CrossRef] [EDP Sciences] [Google Scholar]
  15. R. Sanchez, J. Mondot, Z. Stancovski, A. Cos-Sic, I. Zmijarevic, APOLLO2: A user-oriented, portable, modular code for multi-group transport assembly calculations, Nucl. Sci. Eng. 100, 352 (1988) [CrossRef] [Google Scholar]
  16. J. J. Lautard et al., CRONOS: A modular computational system for neutronic core calculations, IAEA Top. Mtg., 1990, Cadarache, France, 1990. [Google Scholar]
  17. A. Santamarina, D. Bernard, P. Blaise, P. Leconte, R. Le Tellier, C. Vaglio-Gaudard, J.-F. Vidal, in APOLLO2.8: A validated code package for PWR neutronics calculations (2009), Vol. 2, p. 04 [Google Scholar]
  18. A. Santamarina, D. Bernard, P. Blaise, M. Coste, A. Courcelle, T. D. Huynh, C. Jouanne, P. Leconte, O. Litaize, S. Mengelle, G. Noguere, J. Ruggieri, O. Serot, J. Tommasi, C. Vaglio-Gaudard, J.F. Vidal, The JEFF-3.1.1 Nuclear Data Library. Validation Results from JEF-2.2 to JEFF-3.1.1, OECD 2009 NEA No. 6807, ISBN 978-92-64-99074-6, 01 2009. [Google Scholar]
  19. A. Hébert, Applied Reactor Physics (Presses internationales, Polytechnique, 2009) [Google Scholar]
  20. C. Sandrin, Modélisation neutronique du réflecteur pour le calcul des cœurs des réacteurs nucléaires á eau pressurisée: application á l’EPR, Ph.D. thesis, 2010, 2010PA112065 [Google Scholar]
  21. A.M. Baudron, J.J. Lautard, MINOS: a simplified Pn Solver for Core Calculation, Nucl. Sci. Eng. 155, 250 (2007) [CrossRef] [Google Scholar]
  22. A.T. Godfrey et al., VERA core physics benchmark progression problem specifications Consortium for Advanced Simulation of LWRs, 2014 [Google Scholar]
  23. N. Horelik, B. Herman, B. Forget, K. Smith, Benchmark for Evaluation and Validation of Reactor Simulations (BEAVRS), v1.0.1. Proc. Int. Conf., Math. Comput. Methods Appl. Nucl. Sci. Eng. 45, 13 (2013) [Google Scholar]
  24. M. Holmgren, X Steam, Thermodynamic properties of water and steam. Excel file, version 2.6., https://github.com/KurtJacobson/XSteam/blob/master/Excel/XSteam_Excel_v2.6.xls. Accessed: April 2024 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.