Issue
EPJ Nuclear Sci. Technol.
Volume 10, 2024
Status and advances of Monte Carlo codes for particle transport simulation
Article Number 27
Number of page(s) 14
DOI https://doi.org/10.1051/epjn/2024029
Published online 24 December 2024
  1. ANSWERS Software Service, MONK: A Monte Carlo Program for Nuclear Criticality Safety and Reactor Physics Analyses. User Guide for Version 12A. Tech. rep., ANSWERS/MONK/REPORT/016, 2024 [Google Scholar]
  2. ANSWERS Software Service, MONK: A Monte Carlo Program for Nuclear Criticality Safety and Reactor Physics Analyses. User Guide for Version 11A. Tech. rep., ANSWERS/MONK/REPORT/014, 2021 [Google Scholar]
  3. R.J. Brissenden, A.R. Biases, Garlick in the estimation of keff and its error by Monte Carlo methods, Ann. Nucl. Energy 13, 63 (1986) [CrossRef] [Google Scholar]
  4. ANSWERS Software Service, MCBEND: A Monte Carlo Program for General Radiation Transport Solutions. User Guide for Version 12A. Tech. rep., ANSWERS/MCBEND/REPORT/011, 2021 [Google Scholar]
  5. ANSWERS Software Service, VISUAL WORKSHOP: The ANSWERS product to prepare and verify models, launch jobs and visualise results for MONK, MCBEND, RANKERN, WIMS and CRITEXUK. User Guide for Version 4B. Tech. rep., ANSWERS/VISUALWORKSHOP/REPORT/008, 2023 [Google Scholar]
  6. J.A. Fildes, R.P. Hiles, B.J. Jones, S.D. Richards, New capabilities in MONK for modelling stochastic media, in Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Niagara Falls, Canada, August 2023 (Canadian Nuclear Society (CNS), 2023) [Google Scholar]
  7. B.J. Jones, J.A. Fildes, S.D. Richards, J. Sakurai-Hale, Neutron multiplication and reactor kinetics parameters in stochastic media based on randomized noise function, Ann. Nucl. Energy 192, 109943 (2023) [CrossRef] [Google Scholar]
  8. A.J. Cox, C.H. Murphy, S.D. Richards, J.G. Hosking, P.N. Smith, Generalised sensitivities calculations utilising superhistory powering in MONK, in Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Niagara Falls, Canada, August 2023 (Canadian Nuclear Society (CNS), 2023) [Google Scholar]
  9. S.D. Richards, Stochastic mixing of bound thermal scattering data in MONK, Ann. Nucl. Energy 136, 107052 (2020) [CrossRef] [Google Scholar]
  10. B. Becker, R. Dagan, G. Lohnert, Proof and implementation of the stochastic formula for ideal gas, energy dependent scattering kernel, Ann. Nucl. Energy 36, 470 (2009) [CrossRef] [Google Scholar]
  11. J. Terrell, Distributions of fission neutron numbers, Phys. Rev. 108, 783 (1957) [CrossRef] [Google Scholar]
  12. E.R. Woodcock, T. Murphy, T. Hemmings, P.J. Longworth, Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry, in Proceedings of ANL-7050 (Argonne National Laboratory (ANL), 1965) [Google Scholar]
  13. K. Perlin, An image synthesizer, SIGGRAPH Comput. Graphics 19, 287 (1985) [CrossRef] [Google Scholar]
  14. E.G. Gilbert, D.W. Johnson, S.S. Keerthi, A fast procedure for computing the distance between complex objects in three-dimensional space, IEEE J. Robotics Autom. 4, 193 (1988) [CrossRef] [Google Scholar]
  15. ANSWERS Software Service, MCBEND: A Monte Carlo Program for General Radiation Transport Solutions. User Guide for Version 11A. Tech. rep., ANSWERS/MCBEND/REPORT/008, 2013 [Google Scholar]
  16. A. Bird, A. Kyrieleis, Experience using models imported from cad software for shielding calculations in MCBEND, in Proceedings of 12th International Conference on Radiation Shielding (ICRS-12) and 17th Topical Meeting on Radiation Shielding (RPSD-2012), Nara, Japan (Atomic Energy Society of Japan (AESJ), 2012) [Google Scholar]
  17. A.J. Cox, S.D. Richards, G. Dobson, P.N. Smith, Effective kinetic parameter estimation in MONK using an Iterated fission probability method with superhistory powering, in Proceedings of International Conference on Physics of Reactors, Pittsburgh, PA, USA, May 2022 (American Nuclear Society (ANS), 2022) [Google Scholar]
  18. A.J. Cox, R.P. Hiles, S.D. Richards, P.N. Smith, Calculating the change in power shape due to localised perturbations to nuclear data using a generalised sensitivities method in MONK, in Proceedings of International Conference on Physics of Reactors, San Francisco, CA, USA, April 2024 (American Nuclear Society (ANS), 2024) [Google Scholar]
  19. OECD-NEA, International Handbook of Evaluated Criticality Safety Benchmark Experiments (Nuclear Energy Agency (NEA), Paris, 2019) [Google Scholar]
  20. A. Nelson, S. Kim, J. Verbeke, W. Zywiec, Subcritical Measurements of Water-Moderated Highly Enriched Uranium Oxide MTR Type Fuel. FUND-LLNL-ALPHAN-HE3-MULT-001. Tech. rep., NEA/NSC/DOC/(95)03/IX, 2019 [Google Scholar]
  21. R.P. Feynman, F. de Hoffman, R. Serber, Dispersion of the neutron emission in U-235 fission, J. Nucl. Energy 3, 64 (1956) [Google Scholar]
  22. J.M. Verbeke, J. Randrup, R. Vogt, Fission reaction event yield algorithm, FREYA – for event-by-event simulation of fission, Comput. Phys. Commun. 191, 178 (2015) [CrossRef] [Google Scholar]
  23. B.L. Broadhead, B.T. Reardon, C.M. Hopper, J.J. Wagschal, C.V. Parks, Sensitivity and uncertainty based criticality safety validation techniques, Nucl. Sci. Eng. 146, 340 (2017) [Google Scholar]
  24. A. Hoefer, O. Buss, M. Hennebach, M. Schmid, D. Porsch, MOCABA: A general Monte Carlo – Bayes procedure for improved predictions of integral functions of nuclear data, in Proceedings of International Conference on Physics of Reactors, Kyoto, Japan, September 2014 (Japan Atomic Energy Authority (JAEA), 2014) [Google Scholar]
  25. J.J. Lichtenwalter, S.M. Bowman, M.D. DeHart, C.M. Hopper, Criticality benchmark guide for light-water reactor fuel in transportation and storage packages. Tech. Rep., NUREG/CR-6361, 1997 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.