EPJ Nuclear Sci. Technol.
Volume 9, 2023
Euratom Research and Training in 2022: challenges, achievements and future perspectives
Article Number 20
Number of page(s) 12
Section Part 1: Safety research and training of reactor systems
Published online 11 May 2023
  1. D. Verrier et al., Codes and methods improvements for VVER comprehensive safety assessment: the CAMIVVER H2020 Project, Paper 64169, in Proceedings of the 2021 28th International Conference on Nuclear Engineering, ICONE28, August 4–6, 2021, Virtual, Online (2021) [Google Scholar]
  2. D. Schneider et al., APOLLO3®: CEA/DEN deterministic multi-purpose code for reactor physics analysis, in Proceedings of PHYSOR2016 Conference, Sun Valley, Idaho, USA, 1–5 May 2016. [Google Scholar]
  3. CATHARE project. Available online: [Google Scholar]
  4. E. Brun, F. Damian, C.M. Diop, E. Dumonteil, F.X. Hugot, C. Jouanne, Y.K. Lee, F. Malvagi, A. Mazzolo, O. Petit, J.C. Trama, T. Visonneau, A. Zoia, Tripoli-4®, CEA, EDF and AREVA reference Monte Carlo code, Ann. Nucl. Energy 82 151–160 (2015) [CrossRef] [Google Scholar]
  5. J. Leppänen et al., The Serpent Monte Carlo code: Status, development and applications in 2013, Ann. Nucl. Energy 82, 142–150 (2015) [CrossRef] [Google Scholar]
  6. SERPENT code. Available online: [Google Scholar]
  7. P. Hedberg et al., Use of deterministic sampling for uncertainty quantification in CFD, in 16th Int. Topl. Mtg. on Nuclear Reactor Thermal Hydraulics (NURETH-16), Chicago, Illinois, 2015. [Google Scholar]
  8. B. Calgaro et al., Advanced couplings and multiphysics sensitivity analysis supporting the operation and the design of existing and innovative reactors. Energies J. (under publication) [Google Scholar]
  9. H. Austregesilo, C. Bals, A. Hora, G. Lerchl, P. Romstedt, P. Schöffel et al., ATHLET Models and Methods, vol. 4. (Garching, 2016). [Google Scholar]
  10. Gesellschaft für Anlagen- und Reaktorsicherheit gGmbH. ATHLET 2019. (accessed August 19, 2019). [Google Scholar]
  11. F. Barre, M. Bernard, The CATHARE code strategy and assessment, Nucl. Eng. Des. 124, 257–284 (1990) [CrossRef] [Google Scholar]
  12. P. Emonot, A. Souyri, J.L. Gandrille, F. Barré, CATHARE-3: A new system code for thermal-hydraulics in the context of the NEPTUNE project, Nucl. Eng. Des. 241, 4476–4481 (2011) [Google Scholar]
  13. J.-B. Droin, V. Pascal, P. Gauthe, F. Bertrand, G. Mauger, CATHARE3 transient analysis of an innovative Power Conversion System based on the Brayton cycle modelled with real gas Equations Of State, in ICAPP, April 2018, Charlotte, United States [Google Scholar]
  14. G. Mauger, N. Tauveron, F. Bentivoglio, A. Ruby, On the dynamic modeling of Brayton cycle power conversion systems with the CATHARE-3 code, Energy 168, 1002–1016 (2019) [CrossRef] [Google Scholar]
  15. G. Mauger, F. Bentivoglio, N. Tauveron, Description of an improved turbomachinery model to be developed in the cathare3 code for ASTRID power conversion system application, in NURETH 2015–16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, August 2015, Chicago, United States. [Google Scholar]
  16. G. Mauger, N. Tauveron, Modeling of a cold thermal energy storage for the flexibility of thermal power plants coupled to Brayton cycles, Nucl. Eng. Des. 371, 110950 (2021) [CrossRef] [Google Scholar]
  17. [Google Scholar]
  18. [Google Scholar]
  19. [Google Scholar]
  20. J. Venker, Development and validation of models for simulation of supercritical carbon dioxide Brayton cycles and application to self-propelling heat removal systems in boiling water reactors (OPUS, Stuttgart, 2015). [Google Scholar]
  21. M. Hofer, H. Ren, F. Hecker, M. Buck, D. Brillert, J. Starflinger, Simulation, analysis and control of a self-propelling heat removal system using supercritical CO2 under varying boundary conditions, Energy 247, 123500 (2022) [CrossRef] [Google Scholar]
  22. R. Span, W. Wagner, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, J. Phys. Chem. Ref. Data 25, 1509–1596 (1996) [CrossRef] [Google Scholar]
  23. M. Hofer, K. Theologou, J. Starflinger, Qualifizierung von Analysewerkzeugen zur Bewertung nachwärmegetriebener, autarker Systeme zur Nachwärmeabfuhr – sCO2-QA – Abschlussbericht (Förderkennzeichen: 1501494) (Stuttgart, 2021). [Google Scholar]
  24. M. Hofer, M. Buck, J. Starflinger, ATHLET extensions for the simulation of supercritical carbon dioxide driven power cycles, Kerntechnik 84, 390–396 (2019) [CrossRef] [Google Scholar]
  25. M. Hofer, M. Buck, A. Cagnac, T. Prusek, N. Sobecki, P. Vlcek, et al., Deliverable 1.2: Report on the validation status of codes and models for simulation of sCO2-HeRo loop. SCO2-4-NPP (2020). [Google Scholar]
  26. M. Kunick, Fast calculation of thermophysical properties in extensive process simulations with the Spline-based Table Look-up Method (SBTL) (Görlitz, 2017). [Google Scholar]
  27. J.J. Dyreby, S.A. Klein, G.F. Nellis, D.T. Reindl, Development of advanced off-design models for supercritical carbon dioxide power cycles (2012). [Google Scholar]
  28. H.S. Pham, N. Alpy, J.H. Ferrasse, O. Boutin, M. Tothill, et al., An approach for establishing the performance maps of the sc-CO2 compressor: Development and qualification by means of CFD simulations, Int. J. Heat Fluid Flow 61, 379–394 (2016). [CrossRef] [Google Scholar]
  29. K.G. Schmidt, M1 Wärmeübergang an berippten Rohren. (VDI-Wärmeatlas, Springer, Berlin, Heidelberg, 2013), pp. 1459–1465. [Google Scholar]
  30. R. Numrich, J. Müller, J1 Filmkondensation reiner Dämpfe. (VDI-Wärmeatlas, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013), pp. 1011–1028.\63. [Google Scholar]
  31. M. Hofer, M. Buck, M. Strätz, J. Starflinger, Investigation of a correlation based model for sCO2 compact heat exchangers, in 3rd European Conference on Supercritical CO2 (sCO2) Power Systems in Paris, Paris, 2019, pp. 1–9. [Google Scholar]
  32. M. Hofer, H. Ren, F. Hecker, M. Buck, D. Brillert, J. Starflinger, Simulation and analysis OF a self-propelling heat removal system using supercritical CO2 at different ambient temperatures, in 4th Eur. sCO2 Conf., 2021, 1–14. [Google Scholar]
  33. M. Hofer, M. Buck, T. Prusek, N. Sobecki, P. Vlcek, D. Kriz, et al., Deliverable 2.2: Analysis of the performance of the sCO2-4-NPP system under accident scenarios based on scaled-up components data. SCO2-4-NPP: 2021). [Google Scholar]
  34. A. Guelfi, D. Bestion, M. Boucker, P. Boudier, et al., NEPTUNE: a new software platform for advanced nuclear thermal hydraulics, Nucl. Sci. Eng. 156, 281–324 (2007) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.