Open Access
EPJ Nuclear Sci. Technol.
Volume 8, 2022
Article Number 13
Number of page(s) 7
Published online 09 August 2022
  1. H.A. Al-Sewaidan, Natural radioactivity measurements and dose rate assessment of selected ceramic and cement types used in Riyadh, Saudi Arabia, J. King Saud Univ. Sci. 31, 987–992 (2019) [CrossRef] [Google Scholar]
  2. K. Kapanadze, A. Magalashvili, P. Imnadze, Distribution of natural radionuclides in the soils and assessment of radiation hazards in the Khrami Late Variscan crystal massif (Georgia), Heliyon 5, 1–19 (2019) [Google Scholar]
  3. F.B. Masok, P.L. Masiteng, R.D. Mavunda et al., Measurement of radioactivity concentration in soil samples around phosphate rock storage facility in Richards Bay, South Africa, J. Radiat. Res. Appl. Sci. 11, 29–36 (2018) [CrossRef] [Google Scholar]
  4. P.A. Kumara, P. Mahakumara, A. Jayalath, C.P. Jayalth, Estimating natural radiation exposure from building materials used in Sri Lanka, J. Radiat. Res. Appl. Sci. 11, 350–354 (2018) [CrossRef] [Google Scholar]
  5. N. Damla, U. Cevik, A.I. Kobya et al. Radiation dose estimation and mass attenuation coefficients of cement samples used in Turkey, J. Hazardous Mater. 176, 644–649 (2010) [CrossRef] [Google Scholar]
  6. S. Akozcan, F. Külahci, O. Günay, S. Ozden, Radiological risk from activity concentrations of natural radionuclides: cumulative hazard index, J. Radioanal. Nucl. Chem. 78, 1–18 (2020) [Google Scholar]
  7. European Commission (EC), Radiological protection principles concerning the natural radioactivity of building materials. Directorate - general environment, nuclear safety and civil protection, Radiat. Protect. 112, 1–16 (1999) [Google Scholar]
  8. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly, UNSCEAR, New York, USA (2000) [Google Scholar]
  9. B.A. Almayahi, A.A. Tajuddin, M.S. Jaafar, Effect of the natural radioactivity concentrations and 226Ra/238U disequilibrium on cancer diseases in Penang, Malaysia, Radiat. Phys. Chem. 81, 1547–1558 (2012) [CrossRef] [Google Scholar]
  10. C. Nuccetelli, F. Leonardi, R. Trevisi, Building material radon emanation and exhalation rate: Need of a shared measurement protocol from the European database analysis, J. Environ. Radioact. 225, 106438 (2020) [CrossRef] [Google Scholar]
  11. V. Kumar, T.V. Ramachandran, R. Prasad, Natural radioactivity of Indian building materials and by-products, Appl. Radiat. Isotopes 51, 93–96 (1999) [CrossRef] [Google Scholar]
  12. M. Faheem, S.A. Mujahid, Matiullah. Assessment of radiological hazards due to the natural radioactivity in soil and building material samples collected from six districts of the Punjab province-Pakistan. Radiat. Measur. 43, 1443–1447 (2008) [CrossRef] [Google Scholar]
  13. N.K. Ahmed, Measurement of natural radioactivity in building materials in Qena city, Upper Egypt, J. Environ. Radioact. 83, 91–99 (2005) [CrossRef] [Google Scholar]
  14. R.R.S. Trevisi, M. D'Alessandro, C. Nuccetelli et al., Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance, J. Environ. Radioact. 105, 11–20 (2012) [CrossRef] [Google Scholar]
  15. R. Mehra, S. Kaur, R. Prakash, Optimization of fly ash content in cement and assessment of radiological risk, Indoor Built Environ. 29, 1–7 (2020) [Google Scholar]
  16. M.T. Kolo, M.U. Khandaker, Y.M. Amin et al., Assessment of health risk due to the exposure of heavy metals in soil around mega coal-fired cement factory in Nigeria, Results Phys. 11, 755–762 (2018) [CrossRef] [Google Scholar]
  17. A. El-Taher, S. Makhluf, A. Nossair, A.S. Abdel Halim, Assessment of natural radioactivity levels and radiation hazards due to cement industry, Appl. Radiat. Isotopes 68, 169–174 (2010) [CrossRef] [Google Scholar]
  18. C.A. Casagrande, W.L. Repette, D. Hotza, Effect of environmental conditions on degradation of NO gases by photo-catalytic nanotitania-based cement mortars after long-term hydration, J. Cleaner Product. 274, 123067 (2020) [CrossRef] [Google Scholar]
  19. M. Schuhmacher, J.L. Domingo, J. Garreta, Pollutants emitted by a cement plant: health risks for the population living in the neighborhood, Environ. Res. 95, 198–206 (2004) [CrossRef] [Google Scholar]
  20. N. Sharma, J. Singh, C.S. Esakki, R.M. Tripathi, A study of the natural radioactivity and radon exhalation rate in some cements used in India and its radiological significance, J. Radia. Res. Appl. Sci. 9, 47–56 (2016) [Google Scholar]
  21. G. Senthilkumar, R. Ravisankar, K. Vanasundari et al., Assessment of radioactivity and the associated hazards in local cement types used in Tamilnadu, India, Radiat. Phys. Chem. 88, 45–48 (2013) [CrossRef] [Google Scholar]
  22. G. Kastiukas, S. Ruan, S. Liang, X. Zhou, Development of precast geopolymer concrete via oven and microwave radiation curing with an environmental assessment, J. Cleaner Product. 255, 120290 (2020) [CrossRef] [Google Scholar]
  23. H.S. Goükce, B.C. Öztuürk, Ö.A. Caklr, Natural radioactivity of barite concrete shields containing commonly used supplementary materials, Construct. Build. Mater. 236, 117569 (2020) [CrossRef] [Google Scholar]
  24. D. Otwoma, J.P. Patel, S. Bartilol, A.O. Mustapha, Estimation of annual effective dose and radiation hazards due to natural radionuclidess in Mount, Southestern Kenya, Radiat. Protect. Dosim. 155, 497–504 (2012) [Google Scholar]
  25. A. Adugna, Amhara national regional state demography and health, USAID, May, 2000 (2021) [Google Scholar]
  26. B.E. Özdis, N.F. Cam, B.C. Öztuürk, Assessment of natural radioactivity in cements used as building materials in Turkey, J. Radioanal. Nucl. Chem. 311, 307–316 (2017) [CrossRef] [Google Scholar]
  27. A. Mauring, T. Güafvert, Radon tightness of different sample sealing methods for gamma spectrometric measurements of 226Ra, Appl. Radiat. Isotopes 81, 92–95 (2013) [CrossRef] [Google Scholar]
  28. International Atomic Energy Agency (IAEA). Basic safety standards for radiation protection, 1982 edition, IAEA, VIENNA, 1982 STI/PUB/607 ISBN 92-0-123982-3 [Google Scholar]
  29. K. Aladeniyi, A.M. Arogunjo et al., Evaluation of radiomet-ric standards of major building materials used in dwellings of South-Western Nigeria, Radiat. Phys. Chem. 178, 109021 (2021) [CrossRef] [Google Scholar]
  30. O. Baykara, S. Karatepe, M. Dogru, Assessments of natural radioactivity and radiological hazards in construction materials used in Elazig, Turkey, Radiat. Meas. 46, 153–158 (2011) doi:10.1016/j.radmeas.2010.08.010 [CrossRef] [Google Scholar]
  31. H. Papaefthymiou, O. Gouseti, Natural radioactivity and associated radiation hazards in building materials used in Peloponnese, Greece, Radiat. Meas. 43, 1453–1457 (2008). doi:10.1016/j.radmeas.2008.03.032 [CrossRef] [Google Scholar]
  32. Organization for Economic Cooperation and Development. Exposure to Radiation from the Natural Radioactivity in Building Materials. Report by a Group of Experts of the OECD, Nuclear Energy Agency (1979) [Google Scholar]
  33. R. Shweikani, M. Kousa, F. Mizban, The use of phospho-gypsum in Syrian cement industry: radiation dose to public, Ann. Nucl. Energy 54, 197–201 (2013) [CrossRef] [Google Scholar]
  34. M. Altun, N. Sezgin, S. Nemlioglu et al., Natural radioactivity and hazard-level assessment of Portland cements in Turkey, J. Radioanal. Nucl. Chem. 314, 941–948 (2017) [CrossRef] [Google Scholar]
  35. M.S. Amana, N.J. Jubier, M.J.R. Aldhuhaibat, A.A. Salim, Assessment of radioactivity levels in some cement produced locally in Iraq, Radiat. Detect. Technol. Methods 5, 633–640 (2021) [CrossRef] [Google Scholar]
  36. M.A. Sanjuan, J.A. Suârez-Navarro, C. Argiz, P. Mora, Assessment of natural radioactivity and radiation hazards owing to coal fly ash and natural Pozzolan Portland cements, J. Radioanal. Nucl. Chem. 325, 381–390 (2020) [CrossRef] [Google Scholar]
  37. M.T. Kolo, M.U. Khandaker, H.K. Shuaibu, Natural radioactivity in soils around mega coal-fired cement factory in Nigeria and its implications on human health and environment, Arab. J. Geosci. 12, 481 (2019) [CrossRef] [Google Scholar]
  38. A. Eštoková, L. Palaščáková, Assessment of natural radioactivity levels of cements and cement composites in the Slovak Republic, Int. J. Environ. Res. Public Health 10, 7165–7179 (2013) [CrossRef] [Google Scholar]
  39. M.A. Etim, K. Babaremu, J. Lazarus, D. Omole, Health risk and environmental assessment of cement production in Nigeria, Atmosphere 12, 1111 (2021) [CrossRef] [Google Scholar]
  40. International Committee on Radiation Protection, Protection against Rn—222 at home and at work. Publication No. 65, Ann. ICRP 23, Pergamon, Oxford (1994) [Google Scholar]
  41. A.K. Ademola, O.P. Ademola et al., Assessment of natural radioactivity levels in cement samples commonly used for construction in Lagos and Ogun State, Nigeria, Nucl. Radiat. Phys. 102, 44416–44420 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.