Open Access
Issue |
EPJ Nuclear Sci. Technol.
Volume 8, 2022
|
|
---|---|---|
Article Number | 14 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/epjn/2022011 | |
Published online | 09 August 2022 |
- H.A. Al-Sewaidan, Natural radioactivity measurements and dose rate assessment of selected ceramic and cement types used in Riyadh, Saudi Arabia, J. King Saud. Univ. Sci. 31, 987–992 (2019) [CrossRef] [Google Scholar]
- A. Bramki, M. Ramdhane, F. Benrachi, Natural radioelement concentrations in fertilizers and the soil of the Mila region of Algeria, J. Radiat. Resear. Appl. Sci. 11, 49–55 (2018) [CrossRef] [Google Scholar]
- K. Kapanadze, A. Magalashvili, P. Imnadze, Distribution of natural radionuclides in the soils and assessment of radiation hazards in the Khrami Late Variscan crystal massif (Georgia), Heliyon 5, e01377 (2019) [CrossRef] [Google Scholar]
- F.B. Masok, P.L. Masiteng et al., Measurement of radioactivity concentration in soil samples around phosphate rock storage facility in Richards Bay, South Africa, J. Radiat. Resear. Appl. Sci. 11, 29–36 (2018) [CrossRef] [Google Scholar]
- M. Zubair, Shafiqullah, Measurement of natural radioactivity in several sandy-loamy soil samples from Sijua, Dhanbad, India, Heliyon 6, e03430 (2020) [CrossRef] [Google Scholar]
- N. Damla, U. Cevik et al., Radiation dose estimation and mass attenuation coefficients of cement samples used in Turkey, J. Hazard. Mater. 176, 644–649 (2010) [CrossRef] [Google Scholar]
- K.M. Dabayneh, L.A. Mashal, F.I. Hasan, Radioactivity concentration in soil samples in the Southern part of the West Bank, Pakistan, Radiat. Protect. Dosimet. 131, 265–271 (2008) [CrossRef] [Google Scholar]
- A. Amanjeet, S. Kumar et al., Assessment of natural radioactivity levels and associated dose rates in soil samples from historical city Panipat, India, J. Radiat. Res. Appl. Sci. 10, 283–288 (2017) [CrossRef] [Google Scholar]
- S. Aközcan, Külahci, F. Osman, S. Ozden, Environmental assessment of radioactivity levels and radiation hazards in soil at North Western-Mediterranean Sea coast, Egypt, J. Radioanal. Nucl. Chem. 78, 105–122 (2020) [Google Scholar]
- O. Guönay, C. Eke, Determination of terrestrial radiation level and radiological parameters of soil samples from Sariyer-Istanbul in Turkey, Arab. J. Geosci. 12, 631 (2019) [CrossRef] [Google Scholar]
- M.H.E. Monged, A.M. Abu Khatita, et al., Environmental assessment of radioactivity levels and radiation hazards in soil at North Western-Mediterranean Sea coast, Egypt, Environ. Earth Sci. 79, 386 (2020) [CrossRef] [Google Scholar]
- O. Gunay, M.M. Sac, M. Ichedef, C. Tasköopruö, Natural radioactivity analysis of soil samples from Ganos fault (GF), Int. J. Environ. Sci. Technol. 16, 5055–505 (2018) [Google Scholar]
- J.A. Suárez-Navarro, A.M. Morno-Reyes et al., Gamma spectrometry and LabSOCS-calculated efficiency in the radiological characterisation of quadrangular and cubic specimens of hardened portland cement paste, Radiat. Phys. Chem. 171, 108709 (2020) [CrossRef] [Google Scholar]
- Ministry of Agriculture and Livestock Resource, MoALR. Sustainable Land Management Program; Resilient Landscape and Livelihood Project (RLLP); Updated Social Assessment. Addis Ababa (2018) [Google Scholar]
- Office for the Coordination of Humanitarian Affairs, OCHA. Ethiopia: Metekel Zone, Benishangul Gumuz Region Flash Update No. 2 (2021) [Google Scholar]
- International Atomic Energy Agency (IAEA). In Measurement of radionuclides in food and the environment, Technical Report 295 (1989), pp. 32–33 [Google Scholar]
- M.U. Khandaker, O.B. Uwatse, B.A. Khairi et al., Terrestrial radionuclides in surface (dam) water and concomitant dose in metropolitan Kuala Lumpur, Radiat. Protect. Dosim. 185, 343–350 (2019) [Google Scholar]
- M.O. Adeley, B. Musa et al., Activity concentration of natural radionuclides and assessment of the associated radiological hazards in the marine croaker (Pseudotolitus typus) fish from two coastal areas of Nigeria, Sci. World J. 15, 90–95 (2020) [Google Scholar]
- M.D. Dhahir, H.A.A. Mraity et al., Natural radioactivity levels in soil samples of some schools in Al-Shatrah city at Dhi Qar Governorate, Iraq, Malay. J. Sci. 39, 104–114 (2020) [CrossRef] [Google Scholar]
- European Commission (EC), Radiological Protection Principles Concerning the natural radioactivity of building materials. Directorate-General Environment, Nuclear Safety and Civil Protection, Radiation Protection 112 (1999) [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and effects of ionizing radiation. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly, UNSCEAR, New York, USA (2000) [Google Scholar]
- F. Ugbede, A.F. Akpolile, Determination of specific activity of 238U, 232Th and 40K and radiological hazard assessment of tuomo river sediments in Burutu, Delta State, Nigeria, J. Appl. Sci. Environ. Manag. 23, 727–733 (2019) [Google Scholar]
- C. Kranrod, S. Chanyotha et al., A comparative study of the outdoor absorbed dose rate in air by in-situ and soil-sampling-based measurement methods, Radiat. Environ. Medic. 9, 98–104 (2020) [Google Scholar]
- A. Abbasi, H.M.H. Zakaly, F. Mirekhtiary, Baseline levels of natural radionuclides concentration in sediments East coastline of North Cyprus, Mar. Pollut. Bull. 161, 1–7 (2020) [Google Scholar]
- A.M. Abdallah, M. Mohery et al., Radon exhalation and natural radiation exposure in low ventilated rooms, Radiat. Phys. Chem. 81, 1710–1714 (2012) [CrossRef] [Google Scholar]
- Organization for Economic Cooperation and Development (OECD), Exposure to Radiation from the Natural Radioactivity in Building Materials, Report by a Group of Experts of the OECD Nuclear Energy Agency (1979) [Google Scholar]
- A.K. Ademola, A.K. Bello, A.C. Adejumobi, Determination of natural radioactivity and hazard in soil samples in and around gold mining area in Itagunmodi, south-western, Nigeria, J. Radiat. Res. Appl. Sci. 7, 249–255 (2014) [CrossRef] [Google Scholar]
- E.O. Agbalagba, R.A. Onoja, Evaluation of natural radioactivity in soil, sediment and water samples of Niger Delta (Biseni) flood plain lakes, Nigeria, J. Environ. Radioact. 102, 667–671 (2011) [CrossRef] [Google Scholar]
- M.A. Ajemigbitse, F.S. Cannon, N.R. Warner, A rapid method to determine 226 Ra concentrations in Marcellus Shale produced waters using liquid scintillation counting, J. Environ. Radioact. 220-221, 106300 (2020) [CrossRef] [Google Scholar]
- European Commission (EC), Radiation Protection 112. Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials. Directorate-General Environment, Nuclear Safety and Civil Protection (1999) [Google Scholar]
- International Commitee on Radiation Protection, (ICRP), Protection against Rn—222 at home and at work. Publication No. 65; Ann. ICRP 23 (1994) [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation, (UNSCEAR), Sources and Effects of Ionizing Radiation, Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly, United Nations, New York, USA (2000) [Google Scholar]
- I.U. Khan, W. Sun, E. Lewis, Estimation of various radiological parameters associated with radioactive contents emanating with fly ash from Sahiwal coal-fuelled power plant, Pakistan, Environ. Monitor Assess. 192, 715 (2020) [CrossRef] [Google Scholar]
- A. Durusoy, M. Yildirim, Determination of radioactivity concentrations in soil samples and dose assessment for Rize Province, Turkey, J. Radiat. Res. Appl. Sci. 10, 348–352 (2017) [CrossRef] [Google Scholar]
- M. Belivermis, Ö. Kilic et al., The effects of physicochemical properties on gamma emitting natural radionuclide levels in the soil profile of Istanbul, Environ. Monitor Assess. 163, 15–26 (2010) [CrossRef] [Google Scholar]
- A. Abbasi, A. Kurnaz et al., Radiation hazards and natural radioactivity levels in surface soil samples from dwelling areas of North Cyprus, J. Radioanal. Nucl. Chem. 324, 203–210 (2020) [CrossRef] [Google Scholar]
- N. Alazemi, A.D. Bajoga et al., Soil radioactivity levels, radiological maps and risk assessment for the state of Kuwait, Chemosphere 154, 55–62 (2016) [CrossRef] [Google Scholar]
- I.F. Al-Hamarneh, M.I. Awadallah, Soil radioactivity levels and radiation hazard assessment in the highlands of northern Jordan, Radiat. Measur. 44, 102–110 (2009) [CrossRef] [Google Scholar]
- B.A. Almayahi, A.A. Tajuddin, M.S. Jaafar, Effect of the natural radioactivity concentrations and 226Ra/238U disequilibrium on cancer diseases in Penang, Malaysia, Radiat. Phys. Chem. 81, 1547–1558 (2012) [CrossRef] [Google Scholar]
- X. Wang, Q. Feng, R. Sun, G. Liu, Radioactivity of natural nuclides (40K, 238U, 232Th, 226Ra) in coals from Eastern Yunnan, China, Minerals 5, 637–646 (2015) [CrossRef] [Google Scholar]
- L. Wang, X. Lu, Natural radionuclide concentrations in soils around Baoji coal-fired power plant, China, Radiat. Effects Defects Solids 162, 677–683 (2007) [CrossRef] [Google Scholar]
- S.H. Sarki, G.P. Musa et al., Determination of activity concentration level of 226Ra, 232Th and 40K in soil within Igabi Local Government area of Kaduna State, Nigeria, Sci. World J. 15, 113–118 (2020) [Google Scholar]
- T.M. Kadhim, A.A. Alkufi, S.F. Alhous, Measurement of the natural radiological activity of soil samples of some general education schools in Al-Qadisiyah Governorate, Mater. Sci. Eng. 928, 072026 (2020) [Google Scholar]
- D. Otwoma, J.P. Patel et al., Estimation of annual effective dose and radiation hazards due to natural radionuclidess in Mount, Southestern Kenya, Radiat. Protect. Dosim. 155, 497–504 (2013) [CrossRef] [Google Scholar]
- S.N. Singh, B.A. Sharma, T.P. Devi, Study of natural radioactivity 226Ra, 232Th, and 40K) in soil samples for the assessment of average effective dose and radiation hazard parameters, Radiat. Protect. Environ. 40, 154–158 (2017) [Google Scholar]
- M.R. Kardan, N. Fathabdi et al., A national survey of natural radionuclides in soils and terrestrial radiation exposure in Iran, J. Environ. Radioact. 178-179, 168–176 (2017) [CrossRef] [Google Scholar]
- C. Kranrod, R. Kritsananuwat et al., Activity concentration and soil to plant transfer factor of natural radionuclides in Thai lemongrass, Radiat. Environ. Medica. 9, 7–12 (2020) [Google Scholar]
- T. Alharbi, Establishment of natural radioactivity baseline, mapping, and radiological hazard assessment in soils of Al-Qassim, Al-Ghat, Al-Zulfi, and Al-Majmaah, Arab. J. Geosci. 13, 415 (2020) [CrossRef] [Google Scholar]
- H.H. Azeez, H.H. Mansour, S.T. Ahmad, Effect of using chemical fertilizers on natural radioactivity levels in agricultural soil in the Iraqi Kurdistan Region, Polish J. Environ. Study 29, 1059–1068 (2020) [CrossRef] [Google Scholar]
- A.M.M. Al-Mutairi, N.A. Kabir, Natural radionuclides in soil and root vegetables in Malaysia: transfer factors and dose estimates, Radiat. Protect. Dosim. 188, 47–55 (2020) [CrossRef] [Google Scholar]
- A. Al-Harmali, Evaluation of natural radioactivity in selected soil samples collected from northern regions of Oman, Mater. Sci. Eng. 757, 012010 (2020) [Google Scholar]
- N. Akhtar, M. Tufail et al., Radiation dose from natural and mammade radionuclides in the soil of Niabi, Faisalabad, Pakistan, The Nucleus 41, 27–34 (2004) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.