Open Access
EPJ Nuclear Sci. Technol.
Volume 8, 2022
Article Number 12
Number of page(s) 12
Published online 05 July 2022
  1. Progress in Methodologies for the Assessment of Passive Safety System Reliability in Advanced Reactors, IAEA-TECDOC-1752 978-92-0-108614-3, 2014 [Google Scholar]
  2. J. Sierchua, Analysis of passive residual heat removal system in AP1000 nuclear power plant 2019 IOP Conf. Ser.: Earth Environ. Sci. 214 012095 [Google Scholar]
  3. L. Burgazzi, Reliability of Passive Systems in Nuclear Power Plants, DOI:10.5772/47862 [Google Scholar]
  4. J.N. Lillington, G.R. Kimber, Passive decay heat removal in advanced nuclear reactors, J. Hydraulic Res. 35 (1997) [Google Scholar]
  5. M. Misale, Overview on single-phase natural circulation loops, in Proc. of the Intl. Conf. on Advances In Mechanical And Automation Engineering - MAE (2014) [Google Scholar]
  6. D. Gerardin et al., Design evolutions of the molten salt fast reactor, International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development (FR17), 2017 [Google Scholar]
  7. A. Pini, A. Cammi, L. Luzzi, Analytical and numerical investigation of the heat exchange effect on the dynamic behaviour of natural circulation with internally heated fluids, Chem. Eng. Sci. 145, 108–125 (2016) [CrossRef] [Google Scholar]
  8. A. Pini, A. Cammi, L. Luzzi, D.E. Ruiz, Linear and Nonlinear Analysis of the Dynamic Behaviour of Natural Circulation with Internally Heated Fluids, in 10th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-10) (2014) [Google Scholar]
  9. A. Cammi, L. Luzzi, M. Cauzzi, A. Pini, DYNASTY: An Experimental Loop for the Study of Natural Circulation with Internally Heated Fluids [Google Scholar]
  10. D. Ruiz, A. Cammi, L. Luzzi, Dynamic stability of natural circulation loops for singlephase fluids with internal heat generation, Chem. Eng. Sci. 126, 573–583 (2015) [CrossRef] [Google Scholar]
  11. A. Cammi, L. Luzzi, A. Pini, The influence of the wall thermal inertia over a single-phase natural convection loop with internally heated fluids, Chem. Eng. Sci. 153, 411–433 (2016) [CrossRef] [Google Scholar]
  12. OpenFOAM API Guide v2006, [Google Scholar]
  13. R.B. Langtry, F.R. Menter. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes, AIAA J. 47, 2894–2906 (2009) [CrossRef] [Google Scholar]
  14. [Google Scholar]
  15. F.R. Menter, M. Kuntz, R. Langtry, Ten years of industrial experience with the SST turbulence model, in Proceedings of the fourth international symposium on turbulence, heat and mass transfer, Antalya, Turkey (2003), pp. 625–632 [Google Scholar]
  16. P. Ranjan, W.J. Warton, K.A. James, A comparison of physics- and correlation-based turbulence models at low Reynolds numbers, J. Aircraft 57, 1 (2020) [CrossRef] [Google Scholar]
  17. T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, Inc., Hoboken, NJ, United States, 2011) [Google Scholar]
  18. T. Holtzman, Mathematics, Numerics, Derivation and OpenFOAM(R), Holzmann CFD, Leoben, fourth edition (2017) Available at [Google Scholar]
  19. DYMOLA User Manual Volume 1, Dassault Systemes AB [Google Scholar]
  20. F. Casella, A. Leva, Modelling of distributed thermo-hydraulic processes using Modelica, in Proceedings of the MathMod 03 Conference, Wienna, Austria, February 2003 [Google Scholar]
  21. H.E. Hafsteinsson, Porous Media in OpenFOAM, Proceedings of CFD with OpenSource Software, edited by H. Nilsson (2008). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.