Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 8, 2022
Article Number 8
Number of page(s) 21
DOI https://doi.org/10.1051/epjn/2022004
Published online 15 June 2022
  1. B.T.M. Willis, Neutron diffraction studies of the actinide oxides i. uranium dioxide and thorium dioxide at room temperature, Proc. R. Soc. Lond. A 274, 122–133 (1963) [CrossRef] [Google Scholar]
  2. B.T.M. Willis, Neutron diffraction studies of the actinide oxides ii. thermal motions of the atoms in uranium dioxide and thorium dioxide between room temperature and 1100 °C, Proc. R. Soc. Lond. A 274, 134–144 (1963) [CrossRef] [Google Scholar]
  3. B.O. Loopstra, Neutron diffraction investigation of U3O8, Acta Crystallogr. 17, 651–654 (1964) [CrossRef] [Google Scholar]
  4. L. Desgranges, G. Baldinozzi, G. Rousseau, J.-C. Niepce, G. Calvarin, Neutron diffraction study of the in situ oxidation of UO2, Inorg. Chem. 48, 7585–7592 (2009) [CrossRef] [Google Scholar]
  5. H.A. Levy, P.A. Agron, M.A. Bredig, M.D. Danford, X-ray and neutron diffraction studies of molten alkali halides, Ann. New York Acad. Sci. 79, 762–780 (1960) [Google Scholar]
  6. M. Atoji, Neutron diffraction studies of CaC2, YC2, LaC2, CeC2, TbC2, YbC2, LuC2, and UC2, J. Chem. Phys. 35, 1950–1960 (1961) [Google Scholar]
  7. H. Schober, An introduction to the theory of nuclear neutron scattering in condensed matter, J. Neutr. Res. 17, 109–357 (2014) [CrossRef] [Google Scholar]
  8. G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering, 3rd edn. (Cambridge University Press, 2012) [Google Scholar]
  9. X.-X. Cai, T. Kittelmann, Ncrystal: a library for thermal neutron transport, Comput. Phys. Commun. 246, 106851 (2020) [CrossRef] [Google Scholar]
  10. L. Van Hove, Correlations in space and time and born approximation scattering in systems of interacting particles, Phys. Rev. 95, 249–262 (1954) [CrossRef] [Google Scholar]
  11. A. Trkov, D.A. Brown, Endf-6 formats manual: Data formats and procedures for the evaluated nuclear data files, Tech. rep., Brookhaven National Lab. (BNL), Upton, NY (United States), 2018 [Google Scholar]
  12. R.E. MacFarlane, New thermal neutron scattering files for ENDF/B-VI release 2. United States, 1994. Available at https://www.osti.gov/biblio/10192168 [Google Scholar]
  13. R. Macfarlane, D.W. Muir, R. Boicourt, A.C. Kahler III, J.L. Conlin, The enjoy nuclear data processing system, version 2016, Tech. rep., Los Alamos National Lab. (LANL), Los Alamos, NM (United States), 2017 [Google Scholar]
  14. K. Ramic, J.I. Marquez Damian, T. Kittelmann, D.D. Di Julio, D. Campi, M. Bernasconi, G. Gorini, V. Santoro, NJOY + NCrystal: an open-source tool for creating thermal neutron scattering libraries with mixed elastic support, Nucl. Instr. Methods Phys. Res. A 1027, 166227 (2022) [CrossRef] [Google Scholar]
  15. Y. Zhu, A.I. Hawari, Full law analysis scattering system hub (flassh), in Proc. PHYSOR (2018), pp. 22–26 [Google Scholar]
  16. Y.Q. Cheng, L.L. Daemen, A.I. Kolesnikov, A.J. Ramirez-Cuesta, Simulation of inelastic neutron scattering spectra using OCLIMAX, J. Chem. Theory Comput. 15, 1974–1982 (2019) [CrossRef] [Google Scholar]
  17. Y.Q. Cheng, A.J. Ramirez-Cuesta, Calculation of the thermal neutron scattering cross-section of solids using OCLIMAX, J. Chem. Theory Comput. 16, 5212–5217 (2020) [CrossRef] [Google Scholar]
  18. M.L. Zerkle, Mixed elastic scattering format proposal (2020). Available at https://indico.bnl.gov/event/7233/contributions/43822/attachments/31592/49906/Mixed_Elastic_Scattering_Format.pdf [Google Scholar]
  19. A. Sjolander, Multi-phonon processes in slow neutron scattering by crystals, Arkiv Fysik 14, 330–333. [Google Scholar]
  20. H. Sitepu, March-type models for the description of texture in granular materials., Ph.D. thesis, Curtin University, 1998 [Google Scholar]
  21. A. March, Mathematische theorie der regelung nach der korngestah bei affiner deformation, Zeitsch. Kristallogr. 81, 285–297 (1932) [Google Scholar]
  22. W.A. Dollase, Correction of intensities for preferred orientation in powder diffractometry: application of the March model, J. Appl. Crystallogr. 19, 267–272 (1986) [CrossRef] [Google Scholar]
  23. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, Early finding of preferred orientation: a new method, J. Appl. Crystallogr. 27, 1045–1050 (1994) [CrossRef] [Google Scholar]
  24. R. Cerny, V. Valvoda, M. Chladek, Empirical texture corrections for asymmetric diffraction and inclined textures, J. Appl. Crystallogr. 28, 247–253 (1995) [CrossRef] [Google Scholar]
  25. B.T.M. Willis, R.G. Hazell, Re-analysis of single-crystal neutron-diffraction data on UO2 using third cumulants, Acta Crystallogr. A 36, 582–584 (1980) [CrossRef] [Google Scholar]
  26. E.M. Tammar et al., Contribution a l'etude du facteur de structure dynamique des liquides simples, Ph.D. thesis, Metz (2000) [Google Scholar]
  27. P. Egelstaff, Neutron scattering studies of liquid diffusion, Adv. Phys. 11, 203–232 (1962) [CrossRef] [Google Scholar]
  28. R. Turner, The quasi-classical approximation for neutron scattering, Physica 27, 260–264 (1961) [CrossRef] [Google Scholar]
  29. G.H. Vineyard, Scattering of slow neutrons by a liquid, Phys. Rev. 110, 999–1010 (1958) [CrossRef] [Google Scholar]
  30. A. Rahman, K.S. Singwi, A. Sjolander, Theory of slow neutron scattering by liquids. i, Phys. Rev. 126, 986–996 (1962) [CrossRef] [Google Scholar]
  31. S.-T. Lin, M. Blanco, W.A. Goddard, The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of lennard-jones fluids, J. Chem. Phys. 119, 11792–11805 (2003) [CrossRef] [Google Scholar]
  32. T.A. Pascal, S.-T. Lin, W.A. Goddard III, Thermodynamics of liquids: standard molar entropies and heat capacities of common solvents from 2PT molecular dynamics, Phys. Chem. Chem. Phys. 13, 169–181 (2011) [CrossRef] [Google Scholar]
  33. G. Noguere, J.P. Scotta, S. Xu, E. Farhi, J. Ollivier, Y. Calzavarra, S. Rols, M. Koza, J.I. Marquez Damian, Temperature-dependent dynamic structure factors for liquid water inferred from inelastic neutron scattering measurements, J. Chem. Phys. 155, 024502 (2021) [CrossRef] [Google Scholar]
  34. P.A. Egelstaff, P. Schofield, On the evaluation of the thermal neutron scattering law, Nucl. Sci. Eng. 12, 260–270 (1962) [CrossRef] [Google Scholar]
  35. J. Marquez Damian, J. Granada, F. Cantargi, J. Dawidowski, Generation of thermal scattering libraries for liquids beyond the gaussian approximation using molecular dynamics and njoy/leapr, Ann. Nucl. Energy 92, 107–112 (2016) [CrossRef] [Google Scholar]
  36. K.S. Singwi, A. Sjolander, Diffusive motions in water and cold neutron scattering, Phys. Rev. 119, 863–871 (1960) [CrossRef] [Google Scholar]
  37. V.F. Sears, Theory of cold neutron scattering by homonu-clear diatomic liquids: II. Hindered rotation, Can. J. Phys. 44, 1299–1311 (1966) [CrossRef] [Google Scholar]
  38. M. Mattes, J. Keinert, Status of thermal neutron scattering data for graphite, Tech. rep., International Atomic Energy Agency (2005) [Google Scholar]
  39. B. Granger, J. Grout, Jupyterlab: Building blocks for interactive computing, Slides of presentation made at SciPy. [Google Scholar]
  40. T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing, J. development team, Jupyter notebooks—a publishing format for reproducible computational workflows, in Positioning and Power in Academic Publishing: Players, Agents and Agendas, edited by F. Loizides, B. Scmidt (IOS Press, 2016), pp. 87–90 [Google Scholar]
  41. S.K. Lam, A. Pitrou, S. Seibert, Numba: a llvm-based python jit compiler, in Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC (2015), pp. 1–6 [Google Scholar]
  42. I.I. Al-Qasir, Thermal neutron scattering in graphite, Ph.D. thesis, North Carolina State University (2008) [Google Scholar]
  43. R. Coveyou, R. Bate, R. Osborn, Effect of moderator temperature upon neutron flux in infinite, capturing medium, J. Nucl. Energy 2, 153–167 (1956) [Google Scholar]
  44. I. Lux, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (2018). Available at 10.1201/9781351074834. [Google Scholar]
  45. W. Rothenstein, Neutron scattering kernels in pronounced resonances for stochastic doppler effect calculations, Ann. Nucl. Energy 23, 441–458 (1996) [CrossRef] [Google Scholar]
  46. S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, G. Ceder, Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis, Comput. Mater. Sci. 68, 314–319 (2013) [Google Scholar]
  47. S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, G. Ceder, UO2 unit cell with fm3m symmetry. Available at https://materialsproject.org/materials/mp-1597/ (asscessed 2021-04-07) [Google Scholar]
  48. J.L. Wormald, N.C. Fleming, A.I. Hawari, M.L. Zerkle, Generation of the thermal scattering law of uranium dioxide with ab initio lattice dynamics to capture crystal binding effects on neutron interactions, Nucl. Sci. Eng. 195, 227–238 (2021) [CrossRef] [Google Scholar]
  49. S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73, 515–562 (2001) [CrossRef] [Google Scholar]
  50. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21, 395502 (2009) [CrossRef] [PubMed] [Google Scholar]
  51. J.R. Granada, J.I. Marquez Damian, J. Dawidowski, J.I. Robledo, C. Helman, G. Romanelli, G. Skoro, Development of neutron scattering kernels for cold neutron reflector materials. Available at http://arxiv.org/abs/2103.09145 [Google Scholar]
  52. S. Xu, Measurement of the double differential neutron cross section of UO2 and determination of the thermal scattering law as a function of temperature, Ph.D. thesis, Aix-Marseille Universitae (2021) [Google Scholar]
  53. S. Xu, G. Noguere, L. Desgranges, J.M. Damian, Atomic scale monte-carlo simulations of neutron diffraction experiments on stoichiometric uranium dioxide up to 1664 k, Nucl. Instr. Methods Phys. Res. Sect. A 1002, 165251 (2021) [CrossRef] [Google Scholar]
  54. E. Brun, F. Damian, C. Diop, E. Dumonteil, F. Hugot, C. Jouanne, Y. Lee, F. Malvagi, A. Mazzolo, O. Petit, J. Trama, T. Visonneau, A. Zoia, Tripoli-4, cea, edf and areva reference monte carlo code, Ann. Nucl. Energy 82, 151–160 (2015) [Google Scholar]
  55. M.J. Abraham, T. Murtola, R. Schulz, S. Paall, J.C. Smith, B. Hess, E. Lindahl, Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX 1-2, 19–25 (2015) [CrossRef] [Google Scholar]
  56. J. Scotta, Improvement of the thermal and epithermal neutron scattering data for the interpretation of integral experiments, Ph.D. thesis, Aix-Marseille Universitae (2017). [Google Scholar]
  57. M.A. Gonzaalez, J.L.F. Abascal, A flexible model for water based on TIP4P/2005, J. Chem. Phys. 135, 224516 (2011) [CrossRef] [Google Scholar]
  58. J. Maarquez Damiaan, J. Granada, D. Malaspina, Cab models for water: A new evaluation of the thermal neutron scattering laws for light and heavy water in endf-6 format, Ann. Nucl. Energy 65, 280–289 (2014) [CrossRef] [Google Scholar]
  59. G. Noguere, J.P. Scotta, S. Xu, A. Filhol, J. Ollivier, E. Farhi, Y. Calzavarra, S. Rols, B. Fak, J.-M. Zanotti, Q. Berrod, Combining density functional theory and monte carlo neutron transport calculations to study the phonon density of states of Uo2 up to 1675 k by inelastic neutron scattering, Phys. Rev. B 102, 134312 (2020) [CrossRef] [Google Scholar]
  60. W.E. Lamb, Capture of neutrons by atoms in a crystal, Phys. Rev. 55, 190–197 (1939) [CrossRef] [Google Scholar]
  61. G. Borgonovi, Neutron scattering kernels calculations at epithermal energies, Tech. rep., Gulf General Atomic, Inc., San Diego, Calif. (1970) [Google Scholar]
  62. T. Sutton, T. Trumbull, C. Lubitz, Comparison of some monte carlo models for bound hydrogen scattering, in: International Conference on Mathematics, Computational Methods & Reactor Physics, Saratoga Springs, New York USA (2009) [Google Scholar]
  63. J. Dawidowski, L. Rodriguez Palomino, J. Marquez Damian, J. Blostein, G. Cuello, Effective temperatures and scattering cross sections in water mixtures determined by deep inelastic neutron scattering, Ann. Nucl. Energy 90, 247–255 (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.