EPJ Nuclear Sci. Technol.
Volume 8, 2022
Fuel Cycle Simulation TWoFCS 2021
Article Number 16
Number of page(s) 11
Published online 25 August 2022
  1. International Energy Agency, Status of Power System Transformation 2019: Power System Flexibility (IEA, Paris, 2019) [Google Scholar]
  2. A.-L. Mazauric, P. Sciora, V. Pascal, J.-B. Droin, Y. Besanger, N. Hadjsaïd, Q.-T. Tran, N. Guyonneau, Simplified approach to determine the requirements of a flexible nuclear reactor in power system with high insertion of variable renewable energy sources, EPJ Nucl. Sci. Technol. 8, 5 (2022). [CrossRef] [EDP Sciences] [Google Scholar]
  3. NEA; OECD, Small Modular Reactors: Nuclear Energy Market Potential for Near-term Deployment (OECD/NEA Publishing, Paris, 2016) [Google Scholar]
  4. International Energy Agency, Nuclear Power in a Clean Energy System (IEA, Paris, 2019) [Google Scholar]
  5. D. Michaelson, J. Jiang, et al., Review of integration of small modular reactors in renewable energy microgrids, Renew. Sustain. Energy Rev. 152 (2021) [Google Scholar]
  6. B. Poudel, R. Gokaraju, et al., Small Modular Reactor (SMR) based hybrid energy system for electricity & district heating, IEEE Trans. Energy Convers. 36, 2794 (2021) [CrossRef] [Google Scholar]
  7. A. Sabir, D. Michaelson, J. Jiang, et al., Load-frequency control with multimodule small modular reactor configuration: Modeling and dynamic analysis, IEEE Trans. Nucl. Sci. 68, 1367 (2021) [CrossRef] [Google Scholar]
  8. A.A.E. Abdelhameed, Y. Kim, et al., Three-dimensional simulation of passive frequency regulations in the soluble-boron-free SMR ATOM, Nucl. Eng. Design 361, 2699 (2020) [Google Scholar]
  9. International Atomic Energy Agency, Small Modular Reactors, [En ligne]. Available: [Accessed 15 July 2021] [Google Scholar]
  10. International Atomic Energy Agency, Instrumentation and Control Systems for Advanced Small Modular Reactors (IAEA Nuclear Energy Series, Vienna, 2017) [Google Scholar]
  11. T. Athay, R. Podmore, S. Virmani, et al., A practical method for the direct analysis of transient stability, IEEE Trans. Power Appar. Syst. PAS-98, 573 (1979) [CrossRef] [Google Scholar]
  12. M.A. Pai, Energy Function Analysis for Power System Stability (Springer, New York, NY, 1989) [CrossRef] [Google Scholar]
  13. IEEE PES Task Force on Benchmark Systems for Stability Controls, Benchmark Systems for Small-Signal Stability Analysis and Control, [En ligne]. Available: [Accessed 21 June 2021] [Google Scholar]
  14. DigSILENT GmbH, DIgSILENT PowerFactory Version 2020 User Manual, Gomaringen (2020) [Google Scholar]
  15. P. Kundur, Power System Stability and Control (McGraw-Hill, New York, 1994) [Google Scholar]
  16. M. Eremia, M. Shahidehpour, et al., Handbook of Electrical Power System Dynamics: Modeling, Stability, and Control (Wiley, Hoboken, 2013) [CrossRef] [Google Scholar]
  17. G. Bhatt, S. Affijulla, et al., Analysis of large scale PV penetration impact on IEEE 39-bus power system, in IEEE 58th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON) (2017), pp. 1–6 [Google Scholar]
  18. P. Barret, Régimes transitoires des machines électriques tournantes, Techniques de l’ingénieur (1985) [Google Scholar]
  19. P.M. Anderson, A.A. Fouad, et al., Power System Control and Stability, 2nd edn. (Wiley, Hoboken, 2002) [CrossRef] [Google Scholar]
  20. D. Wu, M. Javadi, J.N. Jiang, et al., Preliminary study of impact of reduced system inertia in a low-carbon power system, J. Modern Power Syst. Clean Energy 3, 82 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.