Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 7, 2021
Article Number 10
Number of page(s) 15
DOI https://doi.org/10.1051/epjn/2021011
Published online 11 June 2021
  1. N.M. Larson, Updated users’ guide for SAMMY: Multilevel R-matrix fits to neutron data using Bayes’ equation, tech. rep., ORNL/TM-9179/R8 ENDF-364/R2, 2006 [Google Scholar]
  2. M.C. Moxon, T.C. Ware, C.J. Dean, REFIT-2009 A Least-Square Fitting Program for Resonance Analysis of Neutron Transmission, Capture, Fission and Scattering Data Users’ Guide for REFIT-2009-10, tech. rep., UK Nuclear Science Forum Report UKNSF, 2010 [Google Scholar]
  3. C. De Saint Jean, B. Habert, O. Litaize, G. Noguère, C. Suteau, Status of CONRAD, a nuclear reaction analysis tool,’ EDP Sciences 1, 251–254 (2008) [Google Scholar]
  4. P. Archier, C. De Saint Jean, O. Litaize, G. Noguère, L. Berge, E. Privas, and P. Tamagno, CONRAD evaluation code: development status and perspectives, Nucl. Data Sheets 118, 488–490 (2014) [CrossRef] [Google Scholar]
  5. N. Terranova, O. Serot, P. Archier, C. De Saint Jean, M. Sumini, Covariance matrix evaluations for independent mass fission yields, Nucl. Data Sheets 123, 225–230 (2015) [CrossRef] [Google Scholar]
  6. N. Terranova, O. Serot, P. Archier, C.D.S. Jean, M. Sumini, Fission yield covariance matrices for the main neutron-induced fissioning systems contained in the JEFF-3.1.1 library, Ann. Nucl. Energy 109, 469–489 (2017) [CrossRef] [Google Scholar]
  7. G. Noguère, P. Maldonado, C. De Saint Jean, Doppler broadening of neutron-induced resonances using ab initio phononspectrum, Eur. Phys. J. Plus 133, 177 (2018) [CrossRef] [Google Scholar]
  8. D. Foligno, P. Leconte, O. Serot, O. Litaize, A. Chebboubi, Summation calculation of delayed neutron yields for 235U, 238U and 239Pu, based on various fission yield and neutron emission probability databases, EPJ Web Conf. 193, 03004 (2018) [CrossRef] [Google Scholar]
  9. M. Bayes, M. Price, An essay towards solving a problem in the doctrine of chances, Philos. Trans. 53, 370–418 (1763) [NASA ADS] [CrossRef] [Google Scholar]
  10. A. Papoulis, S.U. Pillai, Probability, Random Variables, and Stochastic Processes. McGraw-Hill series in electrical engineering: Communications and signal processing, Tata McGraw-Hill (2002) [Google Scholar]
  11. C. De Saint Jean, P. Archier, E. Privas, G. Noguère, B. Habert, P. Tamagno, Evaluation of neutron-induced cross sections and their related covariances with physical constraints, Nucl. Data Sheets 148, 383–419 (2018). Special Issue on Nuclear Reaction Data. [CrossRef] [Google Scholar]
  12. P. Schillebeeckx, B. Becker, Y. Danon, K. Guber, H. Harada, J. Heyse, A. Junghans, S. Kopecky, C. Massimi, M. Moxon, N. Otuka, I. Sirakov, K. Volev, Determination of resonance parameters and their covariances from neutron induced reaction cross section data, Nucl. Data Sheets 113, 3054–3100 (2012). Special Issue on Nuclear Reaction Data. [CrossRef] [Google Scholar]
  13. O. Litaize, P. Archier, B. Becker, P. Schillebeeckx, S. Kopecky, Validation of capture yield calculations in the resolved resonance energy range with CONRAD code, EPJ Web Conf. 42, 02003 (2013) [CrossRef] [Google Scholar]
  14. B. Becker, R. Dagan, G. Lohnert, Proof and implementation of the stochastic formula for ideal gas, energy dependent scattering kernel, Ann. Nucl. Energy 36, 470–474 (2009) [CrossRef] [Google Scholar]
  15. P. Archier, C. De Saint Jean, S. Kopecky, O. Litaize, G. Noguère, P. Schillebeeckx, K. Volev, Recent developments in the CONRAD code regarding experimental corrections, EPJ Web Conf. 42, 02004 (2013) [CrossRef] [EDP Sciences] [Google Scholar]
  16. M. Salvatores, G. Palmiotti, G. Aliberti, R. McKnight, P. Archier, C. De Saint Jean, E. Dupont, M. Herman, M. Ishikawa, K. Sugino, T. Ivanova, E. Ivanov, S.-J. Kim, I. Kodeli, A. Trkov, G. Manturov, S. Pelloni, C. Perfetti, B. Rearden, A. Plompen, D. Rochman, W. Wang, H. Wu, W.-S. Yang, Methods and issues for the combined use of integral experiments and covariance data, tech. rep., Organization for Economic Co-operation and Development-Nuclear Energy Agency (OECD-NEA), WPEC-33, December 2013. NEA/NSC/WPEC/DOC(2013)445 [Google Scholar]
  17. C. De Saint Jean, P. Archier, E. Privas, G. Noguère, O. Litaize, P. Leconte, Evaluation of cross section uncertainties using physical constraints: focus on integral experiments, Nucl. Data Sheets 123, 178–184 (2015) [CrossRef] [Google Scholar]
  18. A.M. Lane, R.G. Thomas, R-matrix theory of nuclear reactions, Rev. Mod. Phys. 30, 257–353 (1958) [CrossRef] [MathSciNet] [Google Scholar]
  19. G. Breit, E.P. Wigner, Capture of slow neutrons, Phys. Rev. 49, 519–531 (1936) [CrossRef] [Google Scholar]
  20. C.W. Reich, M.S. Moore, Multilevel formula for the fission process, Phys. Rev. 111, 929–933 (1958) [CrossRef] [Google Scholar]
  21. P.A. Moldauer, Average compound-nucleus cross sections, Rev. Mod. Phys. 36, 1079–1084 (1964) [CrossRef] [Google Scholar]
  22. W. Hauser, H. Feshbach, The inelastic scattering of neutrons, Phys. Rev. 87, 366–373 (1952) [NASA ADS] [CrossRef] [Google Scholar]
  23. P.A. Moldauer, Evaluation of the fluctuation enhancement factor, Phys. Rev. C 14, 764–766 (1976) [CrossRef] [Google Scholar]
  24. J.J.M. Verbaarschot, H.A. Weidenmüller, M.R. Zirnbauer, Grassmann integration in stochastic quantum physics: the case of compound-nucleus scattering, Phys. Rep. 129, 367–438 (1985) [CrossRef] [MathSciNet] [Google Scholar]
  25. A.J. Koning, S. Hilaire, M.C. Duijvestijn, TALYS-1.0, EDP Sci. 1, 211–214 (2008) [Google Scholar]
  26. J. Raynal, Notes on ECIS94, Tech. Rep. CEA-N-2772, pp. 1–145, Commisariat à l’Énergie Atomique, Saclay, France, 1994 [Google Scholar]
  27. G. Guennebaud, B. Jacob et al., Eigen v3. http://eigen.tuxfamily.org (2010) [Google Scholar]
  28. R. Capote, M. Herman, P. Obložinský, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatyuk, A.J. Koning, S. Hilaire, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahori, Z. Ge, Y. Han, S. Kailas, J. Kopeckỳ, V.M. Maslov, G. Reffo, M. Sin, S. Soukhovitskii, Efrem, P. Talou, RIPL – Reference input parameter library for calculation of nuclear reactions and nuclear data evaluations, Nucl. Data Sheets 110, 3107–3214 (2009) [NASA ADS] [CrossRef] [Google Scholar]
  29. J. Kopecky, M. Uhl, Test of gamma-ray strength functions in nuclear reaction model calculations, Phys. Rev. C 41, 1941–1955 (1990) [CrossRef] [Google Scholar]
  30. D.L. Hill, J.A. Wheeler, Nuclear constitution and the interpretation of fission phenomena, Phys. Rev. 89, 1102–1145 (1953) [NASA ADS] [CrossRef] [Google Scholar]
  31. J.D. Cramer, J.R. Nix, Exact calculation of the penetrability through two-peaked fission barriers, Phys. Rev. C 2, 1048–1057 (1970) [CrossRef] [Google Scholar]
  32. A. Gilbert, A.G.W. Cameron, A composite nuclear-level density formula with shell corrections, Can. J. Phys. 43, 1446–1496 (1965) [CrossRef] [Google Scholar]
  33. J.J. Griffin, Statistical model of intermediate structure, Phys. Rev. Lett. 17, 478–481 (1966) [CrossRef] [Google Scholar]
  34. A.J.M. Plompen, O. Cabellos, C. De Saint Jean, M. Fleming, A. Algora, M. Angelone, P. Archier, E. Bauge, O. Bersillon, A. Blokhin, F. Cantargi, A. Chebboubi, C. Diez, H. Duarte, E. Dupont, J. Dyrda, B. Erasmus, L. Fiorito, U. Fischer, D. Flammini, D. Foligno, M.R. Gilbert, J.R. Granada, W. Haeck, F.-J. Hambsch, P. Helgesson, S. Hilaire, I. Hill, M. Hursin, R. Ichou, R. Jacqmin, B. Jansky, C. Jouanne, M.A. Kellett, D.H. Kim, H.I. Kim, I. Kodeli, A.J. Koning, A.Yu. Konobeyev, S. Kopecky, B. Kos, A. Krása, L.C. Leal, N. Leclaire, P. Leconte, Y.O. Lee, H. Leeb, O. Litaize, M. Majerle, J.I. Márquez Damián, F. Michel-Sendis, R.W. Mills, B. Morillon, G. Noguère, M. Pecchia, S. Pelloni, P. Pereslavtsev, R.J. Perry, D. Rochman, A. Röhrmoser, P. Romain, P. Romojaro, D. Roubtsov, P. Sauvan, P. Schillebeeckx, K.H. Schmidt, O. Serot, S. Simakov, I. Sirakov, H. Sjöstrand, A. Stankovskiy, J.C. Sublet, P. Tamagno, A. Trkov, S. van der Marck, F. Álvarez-Velarde, R. Villari, T.C. Ware, K. Yokoyama, G. Zerovnik, The joint evaluated fission and fusion nuclear data library, jeff-3.3, Eur. Phys. J. A 56, 181 (2020) [CrossRef] [EDP Sciences] [Google Scholar]
  35. P. Archier, G. Noguère, C. De Saint Jean, A.J. Plompen, C. Rouki, New JEFF-3.2 sodium neutron induced cross-sections evaluation for neutron fast reactors applications: from 0 to 20 MeV, Nucl. Data Sheets 118, 140–143 (2014) [CrossRef] [Google Scholar]
  36. C. Rouki, P. Archier, C. Borcea, C. De Saint Jean, J. Drohé, S. Kopecky, A. Moens, N. Nankov, A. Negret, G. Noguère, A.J. Plompen, M. Stanoiu, High resolution measurement of neutron inelastic scattering cross-sections for 23 na, Nucl. Instr. Methods Phys. Res. A 672, 82–93 (2012) [CrossRef] [Google Scholar]
  37. C. De Saint Jean, E. Privas, P. Archier, G. Noguère, Estimation of nuclear reaction model parameter covariances and the related neutron induced cross sections with physical constraints, Nucl. Data Sheets 118, 336–340 (2014) [CrossRef] [Google Scholar]
  38. B.E. Watt, Energy spectrum of neutrons from thermal fission of u235, Phys. Rev. 87, 1037–1041 (1952) [CrossRef] [Google Scholar]
  39. D.G. Madland, J.R. Nix, New calculation of prompt fission neutron spectra and average prompt neutron multiplicities, Nucl. Sci. Eng. 81, 213–271 (1982) [CrossRef] [Google Scholar]
  40. L. Berge, Contribution à la modélisation des spectres de neutrons prompts de fission. Propagation d’incertitudes sur un calcul de fluence cuve. PhD thesis, Institut polytechnique de Grenoble (2015) [Google Scholar]
  41. A.C. Wahl, Nuclear-charge distribution and delayed-neutron yields for thermal-neutron-induced fission of 235U, 233U, and 239Pu and for spontaneous fission of 252Cf, Atom. Data Nucl. Data Tables 39, 1–156 (1988) [NASA ADS] [CrossRef] [Google Scholar]
  42. U. Brosa, S. Grossmann, A. Müller, Nuclear scission, Phys. Rep. 197, 167–262 (1990) [NASA ADS] [CrossRef] [Google Scholar]
  43. K.-H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, General description of fission observables: Gef model code, Nuclear Data Sheets 131, 107–221 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  44. S. Chen, P. Tamagno, D. Bernard, P. Archier, G. Noguere, From nuclear physics to displacement damage calculation and uncertainty propagation in Conrad, Results Phys. 17, 103023 (2020) [CrossRef] [Google Scholar]
  45. J. Scotta, G. Noguère, J.M. Damian, Generation of the h in h2o neutron thermal scattering law covariance matrix of the cab model, EPJ Nucl. Sci. Technol. 4, 1–12 (2018) [CrossRef] [Google Scholar]
  46. C. De Saint Jean, E. Privas, P. Archier, G. Noguère, On the use of Bayesian Monte-Carlo in evaluation of nuclear data, in International Conference on Nuclear Data for Science and Technology - ND2016, JRC, Geel, Bruges, Belgium, September 5–9, 2016 [Google Scholar]
  47. C. De Saint Jean, G. Noguère, B. Habert, B. Iooss, A Monte Carlo approach to nuclear model parameter uncertainties propagation, Nucl. Sci. Eng. 161, 363–370 (2009) [CrossRef] [Google Scholar]
  48. B. Habert, C. De Saint Jean, G. Noguère, L.C. Leal, Y. Rugama, Retroactive generation of covariance matrix of nuclear model parameters using marginalization techniques, Nucl. Sci. Eng. 166, 276–287 (2010) [CrossRef] [Google Scholar]
  49. O. Litaize, C. De Saint Jean, G. Noguère, P. Archier, Statistical analysis of a set of actinide resolved resonance parameters with CONRAD code, J. Korean Phys. Soc. 59, 1900–1903 (2011) [CrossRef] [Google Scholar]
  50. D. Foligno, New evaluation of delayed-neutron data and associated covariances. Theses, CEA Cadarache, 13115 SAINT-PAUL-LEZ-DURANCE; Aix Marseille Université, CNRS, Centrale Marseille, ED 353 Sciences pour l’ingénieur, Mécanique, physique, micro et nanoélectronique, 2019 [Google Scholar]
  51. E. Vogt, Theory of low energy nuclear reactions, Rev. Mod. Phys. 34, 723–747 (1962) [CrossRef] [Google Scholar]
  52. N. Michel, Precise coulomb wave functions for a wide range of complex , η and z, Comput. Phys. Commun. 176, 232–249 (2007) [CrossRef] [Google Scholar]
  53. I.J. Thompson, R. Deboer, P. Dimitriou, S. Kunieda, M.T. Pigni, G. Arbanas, H. Leeb, T. Srdinko, G. Hale, P. Tamagno, P. Archier, Verification of r-matrix calculations for charged-particle reactions in the resolved resonance region for the 7Be system, Eur. Phys. J. A 55, 92 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  54. C.R. Brune, Alternative parametrization of R-matrix theory, Phys. Rev. C 66, 044611 (2002) [CrossRef] [Google Scholar]
  55. H. Akaike, Information theory and an extension of the maximum likelihood principle, in Proc. 2nd Int. Symp. Information Theory (2001) 267–281 [Google Scholar]
  56. G. Schwarz, Estimating dimension of a model, Ann. Stat. 6, 461–464 (1978) [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  57. D.J. Spiegelhalter, N.G. Best, B.P. Carlin, A. Van Der Linde, Bayesian measures of model complexity and fit, J. Royal Stat. Soc. B 64, 583–639 (2002) [CrossRef] [Google Scholar]
  58. D. Kumar, S.B. Alam, H. Sjöstrand, J.-M. Palau, C. De Saint Jean, Influence of nuclear data parameters on integralexperiment assimilation using Cook's distance, EPJ Web Conf. 211, 07001 (2019) [CrossRef] [Google Scholar]
  59. D. Kumar, S.B. Alam, H. Sjöstrand, J.M. Palau, C. De Saint Jean, Nuclear data adjustment using Bayesian inference, diagnostics for model fit and influence of model parameters, EPJ Web Conf. 239, 13003 (2020) [CrossRef] [Google Scholar]
  60. H. Leeb, D. Neudecker, T. Srdinko, Consistent procedure for nuclear data evaluation based on modeling, Nucl. Data Sheets 109, 2762–2767 (2008) [CrossRef] [Google Scholar]
  61. D. Neudecker, R. Capote, H. Leeb, Impact of model defect and experimental uncertainties on evaluated output, Nucl. Instr. Methods Phys. Res. A 723, 163–172 (2013) [CrossRef] [Google Scholar]
  62. P. Tamagno, C. De Saint Jean, O. Bouland, G. Noguère, P. Archier, E. Privas, O. Serot, From low- to high-energy nuclear data evaluations – issues and perspectives on nuclear reaction models and covariances, Eur. Phys. J. A 51, 181 (2015) [CrossRef] [EDP Sciences] [Google Scholar]
  63. P. Tamagno, Challenging fission cross section simulation with long standing macro-microscopic model of nucleus potential energy surface. PhD thesis, Université de Bordeaux, 2015 [Google Scholar]
  64. A.J. Koning, S. Hilaire, S. Goriely, Global and local level density models, Nucl. Phys. A 810, 13–76 (2008) [CrossRef] [Google Scholar]
  65. S. Goriely, S. Hilaire, S. Péru, The gogny-hfb+qrpa dipole strength function and its application to radiative neutron capture cross section, EPJ Web Conf. 178, 04001 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.