Issue
EPJ Nuclear Sci. Technol.
Volume 7, 2021
A tribute to Massimo Salvatores' scientific work
Article Number 9
Number of page(s) 9
DOI https://doi.org/10.1051/epjn/2021008
Published online 06 May 2021
  1. M. Salvatores et al., Methods and issues for the combined use of integral experiments and covariance data: results of a NEA international collaborative study, Nucl. Data Sheets 118, 38–71 (2014) [Google Scholar]
  2. L.N. Usachev, Y. Bobkov, Planning on optimum set of microscopic experiments and evaluations to obtain a given accuracy in reactor parameter calculations, INDC CCP-19U, IAEA International Nuclear Data Committee (1972) [Google Scholar]
  3. J.L. Rowlands, L.D. Macdougall, The use of integral measurements to adjust cross-sections and predicted reactor properties, Proceedings of the International Conference on Fast Critical Experiments and their Analysis, ANL-7320 (1966) [Google Scholar]
  4. E. Fort, G. Rimpault, J-C. Bosq et al., Improved performances of the fast reactor calculational system ERANOS-ERALIB1 due to improved a priori nuclear data and consideration of additional specific integral data, Ann. Nucl. Energy 30, 1879–1898 (2003) [Google Scholar]
  5. C. de Saint-Jean (Co-ordinator), Assessment of Existing Nuclear Data Adjustment Methodologies, Report by the Working Party on International Evaluation Co-operation of the NEA Nuclear Science Committee, Vol. 33, NEA/WPEC- 33, OECD/NEA, 2011 [Google Scholar]
  6. G. Palmiotti, M. Salvatores, The role of experiments and of sensitivity analysis in simulation validation strategies with emphasis on reactor physics, Ann. Nucl. Energy 52, 10–21 (2013) [Google Scholar]
  7. Dan Gabriel Cacuci (ed.) Handbook of nuclear engineering: Vol. 1: nuclear engineering fundamentals, Springer, Boston, MA (Springer 2010) [Google Scholar]
  8. G. Evensen, Data Assimilation: The Ensemble Kalman Filter (Springer, Berlin, 2006) [Google Scholar]
  9. N.M. Larson, ORNL Report ORNL/TM-9179/R8, 2008 [Google Scholar]
  10. M. Moxon et al., UKNSF Report, 2010 [Google Scholar]
  11. P. Archier, C. De Saint Jean, O. Litaize, G. Noguère, L. Berge, E. Privas, P. Tamagno, CONRAD evaluation code: development status and perspectives, Nucl. Data Sheets 118, 488–490 (2014) [Google Scholar]
  12. A.J. Koning, Bayesian Monte Carlo method for nuclear data evaluation, Nucl. Data Sheets 123, 207–213 (2015) [Google Scholar]
  13. D. Siefman, M. Hursin, D. Rochman et al., Stochastic vs. sensitivity-based integral parameter and nuclear data adjustments, Eur. Phys. J. Plus 133, 429 (2018) [Google Scholar]
  14. A. Hoefer et al., MOCABA: A general Monte Carlo–Bayes procedure for improved predictions of integral functions of nuclear data, Ann. Nucl. Energy 77, 514–521 (2015) [Google Scholar]
  15. C. De Saint Jean, P. Archier, E. Privas, G. Noguere, On the use of Bayesian Monte-Carlo in evaluation of nuclear data, EPJ Web Conf. 146, 02007 (2017) [Google Scholar]
  16. V. Sobes, L.C. Leal, G. Arbanas, Nuclear data adjustment with SAMMY based on integral experiments, Anaheim, California 111, 843–845 (2014) [Google Scholar]
  17. C. de Saint Jean, P. Archier, E. Privas, G. Nogu‘ere, O. Litaize, P. Leconte, Evaluation of cross section uncertainties using physical constraints: focus on integral experiments, Nucl. Data Sheets 123, 178 (2015) [Google Scholar]
  18. W. Martienssen (ed.), Low Energy Neutron Physics, Landolt-Bornstein (Springer-Verlag, Berlin, 2000) [Google Scholar]
  19. T. Ivanova, E. Ivanov, I. Hill, Methodology and issues of integral experiments selection for nuclear data validation, EPJ Web Conf. 146 (2017) [Google Scholar]
  20. S. Pelloni, D. Rochman, Performance assessment of adjusted nuclear data along with their covariances on the basis of fast reactor experiments, Ann. Nucl. Energy 121, 361–373 (2018) [Google Scholar]
  21. M.G. Kendall, A. Stuart, in The Advanced Theory of Statistics. Vol. 2, Inference and Relationship (Hafner, New York, 1961), pp. 474–483 [Google Scholar]
  22. V.F. Turchin et al., The use of mathematical-statistics methods in the solution of incorrectly posed problems, Soviet Physics Uspekhi 13, 681 (1971) [Google Scholar]
  23. K. Beven, Facets of uncertainty: epistemic uncertainty, nonstationarity, likelihood, hypothesis testing, and communication, Hydrol. Sci. J. 61, 1652–1665 (2016) [Google Scholar]
  24. W. Oberkampf, C. Roy, Verification and Validation in Scientific Computing (Cambridge University Press, UK, 2010) [Google Scholar]
  25. J.B. Briggs, J.D. Bess, J. Gulliford, Integral benchmark data for nuclear data testing through the ICSBEP & IRPhEP, Nucl. Data Sheets 118 (2014) [Google Scholar]
  26. A. Santamarina et al., Reactivity worth measurement of major fission products in MINERVE LWR lattice experiment, Nucl. Sci. Eng. 178, 562–581 (2014) [Google Scholar]
  27. L. Leal, A.D. Santos, E. Ivanov, T. Ivanova, Impact of 235U resonance parameter evaluation in the reactivity prediction, Nucl. Sci. Eng. 187, 127–141 (2017) [Google Scholar]
  28. K.F. Raskach, An Improvement of the Monte Carlo generalized differential operator method by taking into account first- and second-order perturbations of fission source, Nucl. Sci. Eng. 162, 158–166 (2009) [Google Scholar]
  29. B.C. Kiedrowski, F.B. Brown, P.P.H. Wilson, Adjoint-weighted tallies for k-eigenvalue calculations with continuous-energy Monte Carlo, Nucl. Sci. Eng. 168, 226–241 (2011) [Google Scholar]
  30. M. Aufiero et al., A collision history-based approach to sensitivity/perturbation calculations in the continuous energy Monte Carlo code SERPENT, Ann. Nucl. Energy, Volume 85, 245–258 (2015) [Google Scholar]
  31. E. Brun et al., TRIPOLI-4®, CEA, EDF and AREVA reference Monte Carlo code, Ann. Nucl. Energy 82, 151–160 (2015) [Google Scholar]
  32. A. Jinaphanh, N. Leclaire, Continuous-energy perturbation methods in the MORET 5 code, Ann. Nucl. Energy 114, 395–406 (2018) [Google Scholar]
  33. C.M. Perfetti, B.T. Rearden, W.R. Martin, SCALE continuous-energy eigenvalue sensitivity coefficient calculations, Nucl. Sci. Eng. 182, 332–353 (2016) [Google Scholar]
  34. M.T. Pigni, M. Herman, P. Oblozinsky, F.S. Dietrich, Sensitivity analysis of neutron total and absorption cross sections within the optical model, Phys. Rev. C83, 24601 (2011) [Google Scholar]
  35. I. Kodeli, Comments on the status of modern covariance data based on different fission and fusion reactor studies, EPJ Nuclear Sci. Technol. 4, 46 (2018) [EDP Sciences] [Google Scholar]
  36. G. Palmiotti, M. Salvatores, Cross section covariances: a user perspective, EPJ Nuclear Sci. Technol. 4, 40 (2018) [EDP Sciences] [Google Scholar]
  37. E. Bauge, S. Hilaire, P. Dossantos-Uzarralde, Evaluation of the covariance matrix of neutronic cross sections with the Backward-Forward Monte Carlo method, Inter. Conf. Nucl. Sci. Technol. 259–264 (2007) [Google Scholar]
  38. M.B. Chadwick et al., CIELO collaboration summary results: international evaluations of neutron reactions on uranium, plutonium, iron, oxygen and hydrogen, Nucl. Data Sheets 148, 189–213 (2018) [Google Scholar]
  39. D. Kumar, S.B. Alam, H. Sjöstrand, J.M. Palauand, C. De Saint Jean, Influence of nuclear data parameters on integral experiment assimilation using Cook's distance, EPJ Web Conf. 211, 07001 (2019) [Google Scholar]
  40. C. De Saint Jean et al., Evaluation of neutron-induced cross sections and their related covariances with physical constraints, Nucl. Data Sheets 148, 383–419 (2018) [Google Scholar]
  41. T.T. Ivanova, M.N. Nikolaev, K.F. Raskach, E.V. Rozhikhin, A.M. Tsiboulia, Use of international criticality safety benchmark evaluation project data for validation of the ABBN cross-section library with the MMK-KENO code, Nucl. Sci. Eng. 145, 247–255 (2003) [Google Scholar]
  42. The Need for Integral Critical Experiments with Low-moderated MOX Fuels, in Proceedings of the Workshop, Paris, France, 14–15 April 2004, OECD NEA, No. 5668, ISBN 92-64-02078-0 [Google Scholar]
  43. L.C. Leal, G. Noguere, C. de Saint Jean, A.C. Kahler, 239Pu resonance evaluation for thermal benchmark system calculations, Nucl. Data Sheets 118, 122–125 (2014) [Google Scholar]
  44. J.B. Clarity, W.J. Marshall, B.T. Rearden, I. Duhamel, Selected uses of TSUNAMI in critical experiment design and analysis. In: 2020 ANS Virtual Winter Meeting, Transactions, Volume 123, Number 1, 2020, pp. 804–807 [Google Scholar]
  45. T. Frosio, T. Bonaccorsi, P. Blaise, Extension of Bayesian inference for multi-experimental and coupled problem in neutronics − a revisit of the theoretical approach, EPJ Nuclear Sci. Technol. 4, 19 (2018) [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.