Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 6, 2020
Article Number 51
Number of page(s) 11
DOI https://doi.org/10.1051/epjn/2020014
Published online 18 August 2020
  1. M. Oettingen, J. Cetnar, T. Mirowski, The MCB code for numerical modelling of fourth generation nuclear reactors, Comput. Sci. 16, 329–350 (2015) [CrossRef] [Google Scholar]
  2. M.B. Chadwick, M. Herman, P. Oblozinsky et al., ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets, 112(12), 2887–2996 (2011) [CrossRef] [Google Scholar]
  3. A. Santamarina et al., The JEFF-3.1.1 nuclear data library, JEFF Report 22, Validation Results from JEF-2.2 to JEFF-3.1.1, ISBN 978-92-64-99074-6 Nuclear Energy Agency, 2009 [Google Scholar]
  4. International Atomic Energy Agency, IAEA Nuclear Energy Series No. NF-T-2.4, Role of thorium to supplement fuel cycles of future nuclear energy systems, 2012 [Google Scholar]
  5. D.E. Serfontein, E.J. Mulder, Thorium-based fuel cycles: reassessment of fuel economics and proliferation risk, Nucl. Eng. Des. 271, 106–113 (2014) [CrossRef] [Google Scholar]
  6. A. Nuttin, P. Guillemin, A. Bidaud, N. Capellan et al., Comparative analysis of high conversion achievable in thorium-fueled slightly modified CANDU and PWR reactors. Ann. Nucl. Energy 40, 171–189 (2011) [CrossRef] [Google Scholar]
  7. A. Wojciechowski, Criticality of the thorium burnup in equilibrium state, Prog. Nucl. Energy 92, 81–90 (2016) [CrossRef] [Google Scholar]
  8. A. Galahom, Minimization of the fission product waste by using thorium based fuel instead of uranium dioxide, Nucl. Eng. Des. 314, 165–172 (2017) [CrossRef] [Google Scholar]
  9. T. Kooyman, L. Buiron, Neutronic and fuel cycle comparison of uranium and thorium as matrix for minor actinides bearing-blankets, Ann. Nucl. Energy 92, 61–71 (2016) [CrossRef] [Google Scholar]
  10. S.I. Abdel-Khalik, P.A. Haldy, A. Kumar, Blanket design and calculated performance for the lotus fusion-fission hybrid experimental devices test facility, Fus. Sci. Technol. 5 (2), 189–208 (1984) [Google Scholar]
  11. R.C. Martin, J.B. Knauer, P.A. Balo, Production, distribution and applications of californium-252 neutron sources, Appl. Radiat. Isotopes 53, 785–792 (2000) [CrossRef] [PubMed] [Google Scholar]
  12. J. Cetnar, General solution of Bateman equations for nuclear transmutations, Ann. Nucl. Energy 33, 640–645 (2006) [CrossRef] [Google Scholar]
  13. H. Gyorgy, Sz. Czifrus, The utilization of thorium in generation IV reactors, Progr. Nucl. Energy 93 (2016) [CrossRef] [Google Scholar]
  14. D.K. Mohapatra, S.S. Singh, A. Riyas, P. Mohanakrishnan, Physics aspects of metal fuelled fast reactors with thorium blanket, Nucl. Eng. Des. 265, 1232–1237 (2013) [CrossRef] [Google Scholar]
  15. I.V. Shamanin, V.M. Grachev, Y.B. Chertkov, S.V. Bedenko, O. Mendoza, V.V. Knyshev, Neutronic properties of high-temperature gas-cooled reactors with thorium fuel, Ann. Nucl. Energy 113, 286–293 (2018). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.