EPJ Nuclear Sci. Technol.
Volume 6, 2020
Euratom Research and Training in 2019: the Awards collection
Article Number 18
Number of page(s) 8
Published online 08 April 2020
  1. ESNII, ESNII, The European Sustainable Nuclear Industrial Initiative: Concept Paper, SNE-TP, 2010 [Google Scholar]
  2. P. Le Coz, J.-F. Sauvage, J.-M. Hamy, V. Jourdain, J.-P. Biaudis, H. Oota, T. Chauveau, P. Audouin, D. Robertson, R. Gefflot, The ASTRID Project: Status and Future Prospects, in FR13, Paris, France , 2013 [Google Scholar]
  3. A. Alemberti, L. Mansani, G. Grasso, D. Mattioli, F. Roelofs, D. De Bruyn, The European Lead Fast Reactor strategy and the Roadmap for the Demonstrator ALFRED, FR13, Paris, France , 2013 [Google Scholar]
  4. D. De Bruyn et al., The MYRRHA ADS project in Belgium enters the frontend engineering phase, in ICAPP14, Charlotte, USA, 2014 [Google Scholar]
  5. J. Wallenius, S. Qvist, I. Mickus, S. Bortot, P. Szakalos, J. Ejenstam, Design of SEALER, a very small lead-cooled reactor for commercial power production in off-grid applications, Nucl. Eng. Des. 338 , 23 (2018) [CrossRef] [Google Scholar]
  6. IAEA, Status of Fast Reactor Research and Technology Development, IAEA -Tecdoc 1631 (IAEA, Vienna, Austria, 2012) [Google Scholar]
  7. IAEA, Status of Innovative Fast Reactor Designs and Concepts (IAEA, Vienna, Austria, 2013) [Google Scholar]
  8. F. Roelofs, K. van Tichelen, D. Tenchine, Status and Future Challenges of Liquid Metal Cooled Reactor Thermal-hydraulics, in NURETH15, Pisa, Italy, 2013 [Google Scholar]
  9. D. Tenchine, Some thermal hydraulic challenges in sodium cooled fast reactors, Nucl. Eng. Des. 240 , 1195 (2010) [CrossRef] [Google Scholar]
  10. H. Akimoto, H. Ohshima, H. Kamide, S. Nakagawa, K. Ezato, K. Takase, H. Nakamura, Thermalhydraulic research in JAEA; Issues and Future Directions, in NURETH13, Kanazawa, Japan , 2009 [Google Scholar]
  11. C.H. Song, K.K. Kim, D.H. Hahn, W.J. Lee, Y.Y. Bae, B.G. Hong, Thermal-Hydraulic R&Ds for Gen-III+ and Gen-IV Reactors at KAERI: Issues and Future Directions, in NURETH13, Kanazawa, Japan , 2009 [Google Scholar]
  12. K. Velusamy, P. Chellapandi, S. Chetal, B. Raj, Overview of pool hydraulic design of Indian prototype fast breeder reactor, Sadhana 35 , 97 (2010) [CrossRef] [Google Scholar]
  13. J. Sienicki, D. Wade, C. Tzanos, Thermal Hydraulic Research and Development Needs for Lead Fast Reactors, in IAEA Tecdoc 1520, Theoretical and Experimental Studies of Heavy Liquid Metal Thermal Hydraulics (IAEA, 2003) [Google Scholar]
  14. N. Todreas, Thermal Hydraulic Challenges in Fast Reactor Design, in NURETH12, Pittsburgh, USA, 2007 [Google Scholar]
  15. F. Roelofs, V.R. Gopala, K. Van Tichelen, X. Cheng, E. Merzari, W.D. Pointer, Status and Future Challenges of CFD for Liquid Metal Cooled Reactors, in FR13, Paris, France , 2013 [Google Scholar]
  16. P. Chellapandi, K. Velusamy, Thermal hydraulic issues and challenges for current and new generation FBRs, Nucl. Eng. Des. 294 , 202 (2015) [CrossRef] [Google Scholar]
  17. F. Roelofs, A. Shams, A. Batta, V. Moreau, I. Di Piazza, A. Gerschenfeld, P. Planquart, M. Tarantino, Liquid Metal Thermal Hydraulics, State of the Art and Beyond: The SESAME Project, in ENC 2016, Warsaw, Poland, 2016 [Google Scholar]
  18. F. Roelofs ed., Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors (Woodhead Publishing, Elsevier, 2019) [Google Scholar]
  19. F. Roelofs, A. Shams, I. Otic, M. Böttcher, M. Duponcheel, Y. Bartosiewicz, D. Lakehal, E. Baglietto, S. Lardeau, X. Cheng, Status and perspective of turbulence heat transfer modelling for the industrial application of liquid metal flows, Nucl. Eng. Des. 290 , 99 (2015) [CrossRef] [Google Scholar]
  20. A. Shams, A. De Santis, L. Koloszar, A. Villa-Ortiz, C. Narayanan, Status and Perspectives of Turbulent Heat Transfer Modelling in Low-Prandtl Fluids, in SESAME International Workshop, Petten, Netherlands , 2019 [Google Scholar]
  21. A. De Santis, A. Shams, Application of an algebraic turbulent heat flux model to a backward facing step flow at low Prandtl number, Ann. Nucl. Energy 117 , 32 (2018) [CrossRef] [Google Scholar]
  22. A. Shams, A. De Santis, Towards the accurate prediction of the turbulent flow and heat transfer in low-Prandtl fluids, Int. J. Heat Mass Transfer 130 , 290 (2019) [CrossRef] [Google Scholar]
  23. A. De Santis, A. Villa-Ortiz, A. Shams, L. Koloszar, Modelling of a planar impinging jet at unity, moderate and low Prandtl number: assessment of advanced RANS closures, Ann. Nucl. Energy 129 , 125 (2019) [CrossRef] [Google Scholar]
  24. A. Shams, F. Roelofs, I. Tiselj, J. Oder, Y. Bartosiewicz, M. Duponcheel, B. Niceno, W. Guo, E. Stalio, D. Angeli, A. Fregni, S. Buckingham, L.K. Koloszar, A. Villa-Ortiz, P. Planquart, C. Narayanan, D. Lakehal, K. Van Tichelen, W. Jäger, T. Schaub, A Collaborative Effort Towards the Accurate Prediction of Flow and Heat transfer in Low-Prandtl Fluids, in NURETH-18, Portland, USA , 2019 [Google Scholar]
  25. F. Roelofs, H. Uitslag-Doolaard, D. Dovizio, B. Mikuz, A. Shams, F. Bertocchi, M. Rohde, J. Pacio, I. Di Piazza, G. Kennedy, K. Van Tichelen, A. Obabko, E. Merzari, Towards Validated Prediction with RANS CFD of Flow and Heat Transport in a Wire-Wrap Fuel Assembly, in SESAME International Workshop, Petten, Netherlands , 2019 [Google Scholar]
  26. R. Marinari, I. Di Piazza, M. Tarantino, D. Martelli, Temperature Profiles in the Blockage Experiment with the BFPS Test Section, in SESAME International Workshop, Petten, Netherlands , 2019 [Google Scholar]
  27. A. Mathur, H. Uitslag-Doolaard, F. Roelofs, Reduced Resolution RANS Approach Validation to Grid Spacer Fuel Assemblies, in SESAME International Workshop, Petten, Netherlands , 2019 [Google Scholar]
  28. F. Bertocchi, M. Rohde, D. De Santis, A. Shams, H. Dolfen, J. Degroote, J. Vierendeels, FluidStructure Interaction of a 7-rods Bundle: Benchmarking Numerical Simulations with Experimental Data, in SESAME International Workshop, Petten, Netherlands , 2019 [Google Scholar]
  29. D. Grischchencko, M. Jeltsov, K. Kööp, A. Karbojian, W. Villanueva, P. Kudinov, The TALL-3D facility design and commissioning tests for validation of coupled STH and CFD codes, Nucl. Eng. Des. 290 , 144 (2015) [CrossRef] [Google Scholar]
  30. M. Jeltsov, D. Grishchenko, P. Kudinov, Validation of Star-CCM+ for liquid metal thermalhydraulics using TALL-3D experiment, Nucl. Eng. Des. 341 , 306 (2019) [CrossRef] [Google Scholar]
  31. K. Zwijsen, D. Dovizio, V. Moreau, F. Roelofs, CFD Modelling of the CIRCE Facility, in SESAME International Workshop, Petten, Netherlands , 2019 [Google Scholar]
  32. M. Profir, V. Moreau, T. Melichar, Numerical and Experimental Campains for Lead Solidification Modeling and Testing, Nucl. Eng. Des. 359, 110482 (2020) [CrossRef] [Google Scholar]
  33. D. Bestion, System thermalhydraulics for design basis accident analysis and simulation: Status of tools and methods and direction for future R&D, Nucl. Eng. Des. 312 , 12 (2017) [CrossRef] [Google Scholar]
  34. B. Chanaron, C. Ahnert, N. Crouzet, V. Sanchez, N. Kolev, O. Marchand, S. Kliem, A. Papukchiev, Advanced multi-physics simulation for reactor safety in the framework of the NURESAFE project, Ann. Nucl. Energy 84 , 166 (2015) [CrossRef] [Google Scholar]
  35. G. Bandini, M. Polidori, A. Gerschenfeld, D. Pialla, S. Li, W.M. Ma, P. Kudinov, M. Jeltsov, K. Kööp, K. Huber, X. Cheng, C. Bruzzese, A. Class, D. Prill, A. Papukchiev, C. Geffray, R. Macian-Juan, L. Maas, Assessment of systems codes and their coupling with CFD codes in thermal–hydraulic applications to innovative reactors, Nucl. Eng. Des. 281, 22 (2015) [CrossRef] [Google Scholar]
  36. L. Briggs, W. Hu, G.H. Su, B. Vezzoni, A. Del Nevo, R. Zanino, H. Mochizuki, C. Choi, M. Stempniewicz, Y. Zhang, S. Monti, D. Sui, L. Maas, U. Partha Sarathy, A. Petruzzi, H. Ohira, K. Morita, A. Shin, N. Rtishchev, B. Truong, EBR-II Passive Safety Demonstration Tests Benchmark Analyses − Phase 2, in NURETH16, Chicago, USA , 2015 [Google Scholar]
  37. D. Pialla, D. Tenchine, S. Li, P. Gauthe, A. Vasile, R. Baviere, N. Tauveron, F. Perdu, L. Maas, F. Cocheme, K. Huber, X. Cheng, Overview of the system alone and system/CFD coupled calculations of the PHENIX Natural Circulation Test within the THINS project, Nucl. Eng. Des. 290 , 78 (2015) [CrossRef] [Google Scholar]
  38. D. Martelli, M. Tarantino, I. Di Piazza, Experimental Activity for the Investigation of Mixing and Thermal Stratification Phenomena in the CIRCE Pool Facility, in ICONE24, Charlotte, USA , 2016 [Google Scholar]
  39. D. Grishchenko, A. Papukchiev, C. Geffray, C. Liu, M. Polidori, K. Kööp, M. Jeltsov, P. Kudinov, Lessons Learned from the Blind Benchmark on Natural Circulation Instability in TALL-3D, in SESAME International Workshop, Petten, Netherlands , 2019 [Google Scholar]
  40. N. Forgione, M. Angelucci, G. Barone, M. Polidori, A. Cervone, I. Di Piazza, F. Gianetti, P. Lorusso, T. Holland, A. Papukchiev, Blind Simulations of NACIE-UP Experimental Tests by STH codes, in ICONE26, London, UK , 2018 [Google Scholar]
  41. K. Zwijsen, D. Martelli, P. Breijder, N. Forgione, F. Roelofs, Multi-scale Modelling of the CIRCEHERO Facility, in SESAME International Workshop, Petten, Netherlands , 2019 [Google Scholar]
  42. H. Uitslag-Doolaard, F. Alcaro, F. Roelofs, X. Wang, A. Kraus, A. Brunett, J. Thomas, C. Geffray, A. Gerschenfeld, Multiscale Modelling of the Phénix Dissymmetric Test Benchmark, in SESAME International Workshop, Petten, Netherlands , 2019 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.