EPJ Nuclear Sci. Technol.
Volume 4, 2018
Special Issue on 4th International Workshop on Nuclear Data Covariances, October 2–6, 2017, Aix en Provence, France – CW2017
Article Number 29
Number of page(s) 6
Section Covariance Evaluation Methodology
Published online 14 November 2018
  1. E. Bauge, D. Rochman, EPJ Nuclear Sci. Technol. 4, 35 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  2. D. Rochman, E. Bauge, A. Vasiliev, H. Ferroukhi, EPJ Nucl. Sci. Technol. 3, 14 (2017) [Google Scholar]
  3. D. Brown, M.B. Chadwick et al., to appear in Nucl. Data Sheets (2018) [Google Scholar]
  4. T. Kawano, K.M. Hanson, S. Frankle, P. Talou, M.B. Chadwick, R.C. Little, Nucl. Sci. Eng. 153, 1 (2006) [Google Scholar]
  5. G. Noguere et al., in Proc. of the Int. Conf. on Nuclear Data for Science & Technology ND2016, Bruges, Belgium, 2016 , EPJ Web Conf. 146, 02036 (2017) [CrossRef] [Google Scholar]
  6. N. Otuka, E. Dupont et al., Nucl. Data Sheets 120, 272 (2014) and [CrossRef] [Google Scholar]
  7. D. Neudecker, P. Talou, T. Kawano et al., to appear in Nucl. Data Sheets (2018) [Google Scholar]
  8. A. D. Carlson et al., Nucl. Data Sheets 110, 3215 (2009) [CrossRef] [Google Scholar]
  9. A. D. Carlson et al., to appear in Nucl. Data Sheets (2018) [Google Scholar]
  10. A. Nouri et al., Nucl. Sci. Eng. 145, 11 (2003) [Google Scholar]
  11. J.B. Briggs et al., Nucl. Sci. Eng. 145, 1 (2003) [Google Scholar]
  12. T. N. Taddeucci et al., Nucl. Data Sheets 123, 135 (2015) [Google Scholar]
  13. A. M. Daskalakis et al., Ann. Nucl. Energy 73, 455 (2014) [CrossRef] [Google Scholar]
  14. R. Capote et al., Nucl. Data Sheets 131, 1 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  15. D. G. Madland, J. R. Nix, Nucl. Sci. Eng. 81, 213 (1982) [CrossRef] [Google Scholar]
  16. P. Talou, B. Becker, T. Kawano, M. B. Chadwick, Y. Danon, Phys. Rev. C 83, 064612 (2011) [CrossRef] [Google Scholar]
  17. O. Litaize, O. Serot, L. Bergé, Eur. Phys. J. A. 51, 177 (2015) [Google Scholar]
  18. K.-H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, Nucl. Data Sheets 131, 107 (2016) [CrossRef] [Google Scholar]
  19. N. Kornilov, Fission Neutrons: Experiments, Evaluation, Modeling and Open Problems (Springer, NY, USA, 2015) [Google Scholar]
  20. B. Morillon, P. Romain, private communication [Google Scholar]
  21. J.P. Lestone, Nucl. Data Sheets 131, 357 (2016) [CrossRef] [Google Scholar]
  22. K. Meierbachtol, F. Tovesson, D.L. Duke, V. Geppert-Kleinrath, B. Manning, R. Meharchand, S. Mosby, D. Shields, Phys. Rev. C 94, 034611 (2016) [CrossRef] [Google Scholar]
  23. A. Göök, W. Geerts, F.-J. Hambsch, S. Oberstedt, M. Vidali, S. Zeynalov, Nucl. Instrum. Method Phys. Res. A 830, 366 (2016) [Google Scholar]
  24. D. Neudecker, P. Talou, T. Kawano, D.L. Smith, R. Capote, M.E. Rising, A.C. Kahler, Nucl. Instrum. Method Phys. Res. A 791, 80 (2015) [CrossRef] [Google Scholar]
  25. D.E. Vaughan, D.L. Preston, Los Alamos Technical Report LA-UR-14-20441, 2014 [Google Scholar]
  26. M. Mumpower, G.C. McLaughlin, R. Surman, A.W. Steiner, J. Phys. G 44, 034003 (2017) [Google Scholar]
  27. C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning (The MIT Press, Cambridge, MA, USA, 2006) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.