CW 2017
Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 4, 2018
CW 2017
Article Number 12
Number of page(s) 5
DOI https://doi.org/10.1051/epjn/2018015
Published online 29 June 2018
  1. A. Gandini, A generalized perturbation method for bi-linear functionals of the real and adjoint neutron fluxes, J. Nucl. Energy 21, 755 (1967) [CrossRef] [Google Scholar]
  2. N. García-Herranz, O. Cabellos, J. Sanz, J. Juan, J.C. Kuijper, Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations, Ann. Nucl. Energy 35, 714 (2008) [CrossRef] [Google Scholar]
  3. A.J. Koning, D. Rochman, Towards sustainable nuclear energy: putting nuclear physics to work, Ann. Nucl. Energy 35, 2024 (2008) [CrossRef] [Google Scholar]
  4. P. Sabouri, A. Bidaud, S. Dabiran, D. Lecarpentier, F. Ferragut, Propagation of nuclear data uncertainties in deterministic calculations: application of generalized perturbation theory and the total monte carlo method to a PWR burnup pin-cell, Nucl. Data Sheets 118, 523 (2014) [CrossRef] [Google Scholar]
  5. W. Zwermann, B. Krzykacz-Hausmann, L. Gallner, A. Pautz, M. Mattes, Uncertainty analyses with nuclear covariance data in reactor core calculations, J. Korean Phys. Soc. 59, 1256 (2011) [CrossRef] [Google Scholar]
  6. A. Hernandez-Solís, Uncertainty and Sensitivity Analysis Applied to LWR Neutronic and Thermal-Hydraulic Calculations. Ph.D. thesis, Chalmers University of Technology, Sweden, 2012 [Google Scholar]
  7. C.J. Díez, O. Buss, A. Hoefer, D. Porsch, O. Cabellos, Comparison of nuclear data uncertainty propagation methodologies for PWR burn-up simulations, Ann. Nucl. Energy 77, 101 (2015) [CrossRef] [Google Scholar]
  8. K. Zeng, J. Hou, K. Ivanov, M.A. Jessee, Uncertainty Analysis of Light Water Reactor Core Simulations Using Statistic Sampling Method, in M&C 2017 (Jeju, Korea, 2017) [Google Scholar]
  9. O. Cabellos, E. Castro, C. Ahnert, C. Holgado, Propagation of nuclear data uncertainties for PWR core analysis, Nucl. Eng. Technol. 46, 299 (2014) [CrossRef] [Google Scholar]
  10. M. Klein, L. Gallner, B. Krzykacz-Hausmann, A. Pautz, W. Zwermann, Influence of nuclear data uncertainties on reactor core calculations, Kerntechnik 76, 174 (2011) [CrossRef] [Google Scholar]
  11. A.J. Koning, D. Rochman, Modern nuclear data evaluation with the TALYS code system, Nucl. Data Sheets 113, 2841 (2012) [CrossRef] [Google Scholar]
  12. A. Sargeni, K.W. Burn, G.B. Bruna, The impact of heavy reflectors on power distribution perturbations in large PWR reactor cores, Ann. Nucl. Energy 94, 566 (2016) [CrossRef] [Google Scholar]
  13. A. Santamarina, P. Blaise, N. DosSantos, C. Vaglio-Gaudard, C. De Saint Jean, Nuclear data uncertainty propagation on power maps in large LWR cores, in JAEA-Conf–2014-003 , Japan, 2015 [Google Scholar]
  14. K. Ivanov, M. Avramova, S. Kamerow, Benchmarks for uncertainty analysis in modelling (UAM) for the design, operation and safety analysis of LWRs, volume 1: Specification and Support Data for Neutronics Cases (Phase I). OECD, NEA, May 2013 [Google Scholar]
  15. N. Hfaiedh, A. Santamarina, Determination of the optimised SHEM mesh for neutron transport calculation, in Proc. Int. Conf. on Mathematics and Computation, 2005 [Google Scholar]
  16. A. Santamarina, D. Bernard, P. Blaise, P. Leconte, J.-M. Palau, B. Roque, C. Vaglio, J.-F. Vidal, Validation of the New Code Package APOLLO2.8 for Accurate PWR Neutronics Calculations, Sun Valley, Idaho, USA, 2013 [Google Scholar]
  17. G. Damblin, M. Couplet, B. Iooss, Numerical studies of space-filling designs: optimization of Latin Hypercube Samples and subprojection properties, J. Simul. 7, 276 (2013) [CrossRef] [Google Scholar]
  18. C. De Saint Jean, Estimation of multi-group cross section covariances for 235,238U, 239Pu, 241Am, 56Fe, 23Na and 27Al, in PHYSOR 2012, Knoxville, Tenessee, USA, April 2012 [Google Scholar]
  19. L. Berge, Contribution à la modélisation des spectres de neutrons prompts de fission. Propagation d'incertitudes sur un calul de fluence cuve. Ph.D. thesis, Université Grenoble-Alpes, Grenoble, 2015 [Google Scholar]
  20. N. Terranova, Covariance Evaluation for Nuclear Data Interest to the Reactivity Loss Estimatio of the Jules Horowitz Material Testing Reactor. PhD thesis, Università di Bologna, Bologne, 2016 [Google Scholar]
  21. C. Vaglio-Gaudard, A. Santamarina, P. Blaise, O. Litaize, A. Lyoussi, G. Noguère, J.M. Ruggieri, J.F. Vidal, Interpretation of PERLE experiment for the validation of iron nuclear data using monte carlo calculations, Nucl. Sci. Eng. 166, 89 (2010) [CrossRef] [Google Scholar]
  22. C. Vaglio-Gaudard, A. Santamarina, G. Noguère, J.M. Ruggieri, J.-F. Vidal, A. Lyoussi, New 56 Fe covariances for the JEFF3 file from the feedback of integral benchmark analysis, Nucl. Sci. Eng. 166, 267 (2010) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.