Open Access
EPJ Nuclear Sci. Technol.
Volume 4, 2018
Article Number 13
Number of page(s) 17
Published online 22 June 2018
  1. F. Courtin, Study of plutonium incineration in PWR loaded with MOx on enriched uranium support with the fuel cycle simulator CLASS, Theses, Ecole nationale supérieure Mines-Télécom Atlantique, 2017, [Google Scholar]
  2. Direction de l’Energie Nucléaire du CEA, Loi du 28 juin 2006 relative à la gestion durable des matières et des déchets radioactifs: bilan des recherches conduites sur la séparation-transmutation des éléments radioactifs à vie longue et sur le développement de réacteurs nucléaires de nouvelle génération, Tome 1: La gestion durable des matières radioactives avec les réacteurs de quatrième génération, 2012 [Google Scholar]
  3. M. Tiphine, C. Coquelet-Pascal, G. Krivtchik, R. Eschbach, C. Chabert, G.C.M. Caron-Charles, G. Senentz, L.V. den Durpel, C. Garzenne, F. Laugier, Simulations of progressive potential scenarios of pu multirecycling in SFR and associated phaseout in the french nuclear power fleet, in Global 2015 Proceedings (2015) [Google Scholar]
  4. G.V. den Eynde, V. Romanello, F. Martin-Fuertes, C. Zimmerman, B. Lewin, A. Van Heek, Status of the EC-FP7 Project ARCAS: Comparing the economics of accelerator-driven systems and fast reactors as minor actinide burners, in Actinide and Fission Product Partitioning and Transmutation, OECD/NEA (Paris, France, 2013), pp. 301–313 [Google Scholar]
  5. C. Coquelet-Pascal, M. Tiphine, G. Krivtchik, D. Freynet, C. Cany, R. Eschbach, C. Chabert, Nucl. Technol. 192, 91–110 (2015) [CrossRef] [Google Scholar]
  6. K.D. Huff, M.J. Gidden, R.W. Carlsen, R.R. Flanagan, M.B. McGarry, A.C. Opotowsky, E.A. Schneider, A.M. Scopatz, P.P. Wilson, Adv. Eng. Softw. 94, 46–59 (2016) [CrossRef] [Google Scholar]
  7. M.B. McGarry, D. Buys, C. Hoffman, B. Mouginot, P.P.H. Wilson, State-level decision-making in cyclus to assess multilateral enrichment, in INMM 58th Annual Meeting (Indian Wells, USA, 2017) [Google Scholar]
  8. M. Göttsche, B. Mouginot, An integrated nuclear archaeology approach to reconstruct fissile material production histories, in 39th ESARDA Symposion (Germany, 2017) [Google Scholar]
  9. J.J. Jacobson, A.M. Yacout, G.E. Matthern, S.J. Piet, D.E. Shropshire, R.F. Jeffers, T. Schweitzer, Nucl. Technol. 172, 157–178 (2010) [CrossRef] [Google Scholar]
  10. F. Âlvarez-Velarde, E. Gonzàlez-Romero, I.M. Rodriguez, Ann. Nucl. Energy 73, 175–188 (2014) [CrossRef] [Google Scholar]
  11. L. Van Den Durpel, in Proceedings of the 20th Pacific Basin Nuclear Conference, 2017, edited by H. Jiang (Springer Singapore, 2017), pp. 463–476 [CrossRef] [Google Scholar]
  12. G. Krivtchik, Thesis, Université de Grenoble, 2014, [Google Scholar]
  13. B. Hyland, D. Wojtaszek, C. Coquelet-Pascal, D. Freynet, F. Alvarez-Velarde, M. Garciac, B. Dixon, F. Gabrielli, B. Vezzoni, G. Glinatsis, K. Ono, A. Ohtaki, E. Malambu, B. Carlier, S. Cornet, The Effects of the Uncertainty of Input Parameters on Nuclear Fuel Cycle Scenario Studies, Technical Report, Nuclear Energy Agency of the OECD (NEA), 2015 [Google Scholar]
  14. A. Baker, R. Ross, Comparison of the value of plutonium and uranium isotopes in fast reactors, in USAEC, Breeding, Economics, and Safety in Large Fast Breeder Reactors (Argonne National Laboratory, Illinois, 1963), pp. 329–365 [Google Scholar]
  15. B. Leniau, B. Mouginot, N. Thiollière, X. Doligez, A. Bidaud, F. Courtin, M. Ernoult, S. David, Ann. Nucl. Energy 81, 125–133 (2015) [CrossRef] [Google Scholar]
  16. A. Somaini, S. David, X. Doligez, A. Zakari-Issoufou, A. Bidaud, N. Cappelan, O. Meplan, A. Nuttin, P. Prevot, F. Courtin, B. Leniau, B. Mouginot, N. Thiolliere, The impact of reactor model simplification for fuel evolution: a bias quantification for fuel cycle dynamic simulations, in 2016 International Congress on Advances in Nuclear Power Plants (ICAPP 2016) (San Francisco, United States, 2016), pp. 1045–1053, [Google Scholar]
  17. A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models (Halsted Press, New York, NY, USA, 2004) [Google Scholar]
  18. A. Saltelli, K. Chan, E.M. Scott, Sensitivity Analysis (Wiley, 2009) [Google Scholar]
  19. A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, S. Tarantola, Comput. Phys. Commun. 181, 259–270 (2010) [CrossRef] [Google Scholar]
  20. J. Jacques, Theses, Université Joseph-Fourier - Grenoble I, 2005, (2011) [Google Scholar]
  21. R. Brun, F. Rademakers, Nucl. Instrum. Methods A389, 81–86 (1997) [CrossRef] [Google Scholar]
  22. M.D. McKay, R.J. Beckman, W.J. Conover, Technometrics 21, 239–245 (1979) [Google Scholar]
  23. B. Mouginot, B. Leniau, N. Thiollère, M. Ernoult, S. David, X. Doligez, A. Bidaud, O. Meplan, R. Montesanto, G. Bellot, J. Clavel, I. Duhamel, E. Letang, J. Miss, Core library for advanced scenario simulation, CLASS: principle and application, in PHYSOR 2014–The Role of Reactor Physics toward a Sustainable Future (2014) [Google Scholar]
  24. F. Casella, A. Bidaud, N. Thiollière, Economic Module development for the Fuel Cycle Simulation tool CLASS and its application on the Brazil-Argentinean scenario,Master’s thesis, Laboratoire de Physique Subatomique et de Cosmologie de Grenoble, 2016 [Google Scholar]
  25. A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. Von Toerne, H. Voss, PoS ACAT 040 (2007) [Google Scholar]
  26. A.-A. Zakari-Issoufou, X. Doligez, A. Somaini, Q. Hoarau, S. David, S. Bouneau, F. Courtin, B. Leniau, N. Thiollière, B. Mouginot, A. Bidaud, N. Capellan, O. Meplan, A. Nuttin, Ann. Nucl. Energy 102, 220–230 (2017) [CrossRef] [Google Scholar]
  27. A. Janon, T. Klein, A. Lagnoux-Renaudie, M. Nodet, C. Prieur, ESAIM: Probab. Stat. 18, 342–364 (2014) [CrossRef] [Google Scholar]
  28. G. Pujol, B. Iooss, A.J. with contributions from Khalid Boumhaout, S.D. Veiga, T. Delage, J. Fruth, L. Gilquin, J. Guillaume, L.L. Gratiet, P. Lemaitre, B.L. Nelson, F. Monari, R. Oomen, B. Ramos, O. Roustant, E. Song, J. Staum, T. Touati, F. Weber, Sensitivity: Global Sensitivity Analysis of Model Outputs (2017),, r package version 1.14.0 [Google Scholar]
  29. R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2015), [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.