Open Access
EPJ Nuclear Sci. Technol.
Volume 3, 2017
Article Number 16
Number of page(s) 8
Published online 14 June 2017
  1. A. Laureau, Développement de modèles neutroniques pour le couplage thermohydraulique du MSFR et le calcul de paramètres cinétiques effectifs, Ph.D. thesis, Université Grenoble Alpes, 2015 [Google Scholar]
  2. A. Laureau, M. Aufiero, P. Rubiolo, E. Merle-Lucotte, D. Heuer, Coupled neutronics and thermal-hydraulics transient calculations based on a fission matrix approach: application to the Molten Salt Fast Reactor, in Joint International Conference on Mathematics and Computation, Supercomputing in Nuclear Applications and the Monte Carlo Method (M&C+SNA+MC 2015), Nashville, USA (2015) [Google Scholar]
  3. A. Laureau, M. Aufiero, P. Rubiolo, E. Merle-Lucotte, D. Heuer, Transient fission matrix: kinetic calculation and kinetic parameters βeff and Λeff calculation, Ann. Nucl. Energy 85, 1035 (2015) [CrossRef] [Google Scholar]
  4. P. Sciora, D. Blanchet, L. Buiron, B. Fontaine, M. Vanier, F. Varaine, C. Venard, S. Massara, A.-C. Scholer, D. Verrier, Low void effect core design applied on 2400 MWth SFR reactor, in International Congress on Advances in Nuclear Power Plants (ICAPP), 2011 (2011) [Google Scholar]
  5. U. Feldman, E. Gelbard, R. Blomquist, Monte Carlo small-sample perturbation calculations, Tech. Rep. (Argonne National Lab., IL, USA, 1983) [Google Scholar]
  6. H. Rief, Generalized Monte Carlo perturbation algorithms for correlated sampling and a second-order Taylor series approach, Ann. Nucl. Energy 11, 455 (1984) [CrossRef] [Google Scholar]
  7. F.X. Gallmeier, A New MCNP Option: KCORR – the use of the correlated sampling method to study reactivity effects due to changes of a reactor arrangement, Nucl. Sci. Eng. 120, 102 (1995) [CrossRef] [Google Scholar]
  8. E. Brun, F. Damian, C. Diop, E. Dumonteil, F. Hugot, C. Jouanne, Y. Lee, F. Malvagi, A. Mazzolo, O. Petit et al., Tripoli-4®, CEA, EDF and AREVA reference Monte Carlo code, Ann. Nucl. Energy 82, 151 (2015) [CrossRef] [Google Scholar]
  9. W. Bernnat, A Monte Carlo technique for local perturbations in multiplying systems, in Proc. NEACRP Specialist Meeting, ANL-75-2 (1974), p. 261 [Google Scholar]
  10. J. Dufek, W. Gudowski, Fission Matrix based Monte Carlo criticality calculations, Ann. Nucl. Energy 36, 1270 (2009) [CrossRef] [Google Scholar]
  11. D. Kornreich, D. Parsons, Time–eigenvalue calculations in multi-region Cartesian geometry using Green’s functions, Ann. Nucl. Energy 32, 964 (2005) [CrossRef] [Google Scholar]
  12. S. Carney, F. Brown, B. Kied-rowski, W. Martin, Fission matrix capability for MCNP Monte Carlo, Trans. Am Nucl. Soc. 107, 494 (2012) [Google Scholar]
  13. S. Carney, F. Brown, B. Kiedrowski, W. Martin, Theory and applications of the fission matrix method for continuous-energy Monte Carlo, Ann. Nucl. Energy 73, 423 (2014) [CrossRef] [Google Scholar]
  14. J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82, 142 (2015) [CrossRef] [Google Scholar]
  15. A. Laureau, L. Buiron, F. Bruno, Towards spatial kinetics in a low void effect sodium fast reactor: core analysis and validation of the TFM neutronic approach, EPJ Nuclear Sci. Technol. 3, 17 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  16. B. Fontaine et al., Sodium-cooled fast reactors: the ASTRID plant project, in Proc. GLOBAL, 2011 (2011), pp. 11–16 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.