Issue
EPJ Nuclear Sci. Technol.
Volume 11, 2025
Euratom Research and Training in 2025: ‘Challenges, achievements and future perspectives’, edited by Roger Garbil, Seif Ben Hadj Hassine, Patrick Blaise, and Christophe Girold
Article Number 20
Number of page(s) 16
DOI https://doi.org/10.1051/epjn/2025010
Published online 16 June 2025
  1. IPCC (Intergovernmental Panel on Climate Change), AR6 Synthesis Report: Climate Change 2023, Technical Report, 2023 [Google Scholar]
  2. J.B. Lamarsh, A.J. Baratta, Introduction to Nuclear Engineering, 3rd edn. (Prentice Hall, 2001) [Google Scholar]
  3. IAEA, Design Safety Considerations for Water Cooled Small Modular Reactors Incorporating Lessons Learned from the Fukushima Daiichi Accident, TECDOC 1785, IAEA, Vienna, 2016 [Google Scholar]
  4. IAEA, Progress in Methodologies for the Assessment of Passive Safety System Reliability in Advanced Reactors, TECDOC 1752, IAEA, Vienna, 2014 [Google Scholar]
  5. IAEA, Review of fuel failures in water cooled reactors (2006–2015). IAEA No NFT-2.5, NE1864 (2019) [Google Scholar]
  6. NRC (2015), https://www.nrc.gov/docs/ML1501/ML15015A419.pdf [Google Scholar]
  7. K. Kotthoff, Erkenntnisse aus dem Ablauf ausländischer Vorkommnisse mit Dampferzeuger-Heizrohrbruch, GRS, Tech. Mitt. 77, 1 (1984) [Google Scholar]
  8. P.E. MacDonald, V.N. Shah, L.W. Ward, P.G. Ellison, Steam Generator Tube Failures, NUREG/CR-6365 INEL-95/0383 (1996) [Google Scholar]
  9. H. Lundqvist, How Things Can Go Wrong, High Vibration Levels in Steam Lines, GO-VIKING Stakeholders’ Workshop, February 16th, 2023, EDF, Paris, France [Google Scholar]
  10. A. Papukchiev, K. Zwijsen, D. Vivaldi, H. Hadžić, S. Benhamadouche, W. Benguigui, P. Planquart, The European GO-VIKING project on flow-induced vibrations: overview and current status, Kerntechnik 89, 2 (2024), https://doi.org/10.1515/kern-2023-0126 [Google Scholar]
  11. M. Polidori, P. Meloni, C. Lombardo, A. Achilli, C. Congiu, G. Cattadori, Test Campaign and RELAP5 Post-Test Analysis on the Bayonet Tube HERO-2 Component, in Proceeding of 2019 International Congress on Advances in nuclear Power Plants (ICAPP’19), Juan-les-Pins, France, 2019, May 12–15 [Google Scholar]
  12. A. Achilli, G. Cattadori, R. Ferri, M. Rigamonti, F. Bianchi, P. Meloni, PERSEO Project: Experimental Facility Set-Up and RELAP5 Code Calculations, in Proceeding of 2nd EMSI and 40th European Two-Phase Flow Group Meeting, Stockholm, Sweden, 2002, June 10–13 [Google Scholar]
  13. K. Umminger, L. Dennhardt, S. Schollenberger, B. Schoen, Integral Test facility PKL: experimental PWR accident investigation, Sci. Technol. Nucl. Install. 2012, 1 (2012) [CrossRef] [Google Scholar]
  14. PASTELS project, Deliverable D3.1: PKL & SACO Technical Description & Design Review Report, 2020, https://www.pastels-h2020.eu/ [Google Scholar]
  15. V. Kouhia, V. Riikonen, O.-P. Kauppinen, J. Telkkä, J. Hyvärinen, PASI – a test facility for research on passive heat removal, Nucl. Eng. Des. 383, 1 (2021), https://doi.org/10.1016/j.nucengdes.2021.111417 [CrossRef] [Google Scholar]
  16. PASTELS project, Deliverable D4.2: PASI facility description for PASTELS (2021), https://www.pastels-h2020.eu/ [Google Scholar]
  17. IAEA, Passive Safety Systems and Natural Circulation in Water Cooled Nuclear Power Plants, 2009 [Google Scholar]
  18. PASTELS project, Deliverable D2.1: Bibliographic research on the phenomena related to the natural circulation in closed loop (2021), https://www.pastels-h2020.eu/ [Google Scholar]
  19. PASTELS project, Deliverable D2.2: Description of HERO-2 facility and simulations (2022), https://www.pastels-h2020.eu/ [Google Scholar]
  20. PASTELS project, Deliverable D2.3: Simulation of PERSEO experiments (2023), https://www.pastels-h2020.eu/ [Google Scholar]
  21. O.S. Al-Yahia, I. Clifford, H. Ferroukhi, Assessment of TRACE code for modeling of passive safety system during long transient SBO via PKL/SACO facility, Nucl. Eng. Technol. 56, 2893 (2024), https://doi.org/10.1016/j.net.2024.02.050 [CrossRef] [Google Scholar]
  22. P. Dené, M. Montout, E. Garcia, J. Telkkä, V. Riikonen, F. David, Frequency and amplitude of flashing-induced instability in an open natural circulation loop, Nucl. Eng. Des. 424 (2024) [Google Scholar]
  23. PASTELS project, Deliverable D2.4: Synthesis on the status of code validation on separate (SET) and coupled effect tests (CET) (2024), https://www.pastels-h2020.eu/ [Google Scholar]
  24. PASTELS project, Deliverable D3.6: Advances on SACO design and related models (2024), https://www.pastels-h2020.eu/ [Google Scholar]
  25. PASTELS project, Deliverable D4.6: Advances on safety CWC design and related models (2024), https://www.pastels-h2020.eu/ [Google Scholar]
  26. D. Vivaldi, A. Papukchiev, K. Zwijsen, M. Hussain, W. Benguigui, S. Benhamadouche, Flow-induced vibrations in nuclear power plants, GO-VIKING Deliverable D1.2, https://go-viking.eu/results [Google Scholar]
  27. W. Benguigui, S. Benhamadouche, F. Beltran, M. Hassan, Experimental and numerical contributions on flow-induced vibration in steam-generator-like tube bundles: A review, Nucl. Eng. Des. 424, 113305 (2024) [CrossRef] [Google Scholar]
  28. D. Vivaldi, S. Benhamadouche, Report on industry needs and regulatory expectations in terms of tools and methods for FIV analysis, GO-VIKING Deliverable D1.1, https://go-viking.eu/results [Google Scholar]
  29. H. Hadžić, M. Ren, B. Dressel, D. Tumbajoy Spinel, M. Quenehen, B. Painter, H. Marr, K. Duggan, Numerical Simulation of Flow-Induced Vibration of Nuclear Fuel Assemblies, in Proceedings of the NURETH-20 conference, Washington, USA, August 20–25 (2023) [Google Scholar]
  30. T. Franklin, L. Carasik, Preliminary LES of cross flow in the GOKSTAD experimental tube bundle, in Proceedings of the ANS Annual Meeting, Las Vegas, USA, June 16–19 (2024) [Google Scholar]
  31. R. Lagrange, D. Panunzio, TITAN experiment: presentation of the data, GO-VIKING Deliverable D4.5, https://go-viking.eu/results [Google Scholar]
  32. P. Piteau, X. Delaune, D. Panunzio, R. Lagrange, J. Antunes, Experimental investigation of in-flow fluidelastic instability for rotated triangular tube bundles subjected to single-phase and two-phase transverse flows, J. Fluid. Struct. 123, 104005 (2023), https://doi.org/10.1016/j.jfluidstructs.2023.104005 [CrossRef] [Google Scholar]
  33. H. Dolfen, J. Degroote, A synthetic bubble model as inlet for fluid-structure interaction simulations with two-phase flow, in Proceedings of The 9th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) Congress 2024, Lisboa, Portugal, June 3–7 (2024) [Google Scholar]
  34. W. Benguigui, F. Beltran, Local-scale numerical simulation of an air-water flow in a tri-angular tube bundle in rigid and flexible configurations for different flow patterns, in Proceedings of Pressure Vessels & Piping Conference, Montreal, Canada, July 20–25 (2025) [Google Scholar]
  35. J. Cardolaccia, F. Baj, An experimental study of fluid-structure interaction in basic in-line arrangements of cylinders, in Proceedings of the Pressure Vessels and Piping Conference, Boston, USA, July 19–23 (2015), https://doi.org/10.1115/PVP2015-45311 [Google Scholar]
  36. A. Papukchiev, H. Mistry, J. Herb, Flow-induced vibrations in nuclear steam generators: simulation of the AMOVI experiment with different FSI approaches, in Proceedings of the NUTHOS-14 conference, Vancouver, Canada, August 25–28 (2024) [Google Scholar]
  37. S. Benhamadouche, Wall-resolved LES combined to ALE for predicting flow-induced vibrations of a single flexible tube at different Reynolds numbers, in Proceedings of Pressure Vessels and Piping Conference, Montreal, Canada, July 20–25 (2024) [Google Scholar]
  38. J. Degroote, H. Dolfen, R. Dwight, A. Eidi, Development of UQ approaches for FIV analyses, GO-VIKING Deliverable D5.3, https://go-viking.eu/results [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.