Issue
EPJ Nuclear Sci. Technol.
Volume 11, 2025
Status and advances of Monte Carlo codes for particle transport simulation
Article Number 7
Number of page(s) 11
DOI https://doi.org/10.1051/epjn/2025001
Published online 04 March 2025
  1. F.B. Brown, T.M. Sutton, Monte Carlo fundamentals. No. KAPL-4823 (Knolls Atomic Power Lab. (KAPL), Niskayuna, NY (United States), 1996) [Google Scholar]
  2. H. Lee, W. Kim, P. Zhang, M. Lemaire, A. Khassenov, J. Yu, Y. Jo, J. Park, K. Lee, MCS – A Monte Carlo particle transport code for large-scale power reactor analysis, Ann. Nucl. Energy 139, 107276 (2020) [CrossRef] [Google Scholar]
  3. X-5 Monte Carlo Team, MCNP–A General Monte Carlo N-Particle Transport Code, Version 5. LA-UR-03-1987 (Los Alamos National Laboratory, 2003) [Google Scholar]
  4. A. Khassenov, S. Choi, D. Lee, On the fly doppler broadening using multipole representation, KNS Spring Meeting, Jeju, Korea, 2015 [Google Scholar]
  5. C. Josey, P. Ducru, B. Forget, K. Smith, Windowed multipole for cross section Doppler broadening, J. Comput. Phys. 307, 715 (2016) [CrossRef] [Google Scholar]
  6. F.B. Brown, The MAKXSF Code with Doppler Broadening. LA-UR-06-7002 (Los Alamos National Laboratory, 2006) [Google Scholar]
  7. M. Lemaire, H. Lee, B. Ebiwonjumi, et al. Verification of photon transport capability of UNIST Monte Carlo code MCS, Comput. Phys. Commun. 231, 1 (2018) [CrossRef] [Google Scholar]
  8. P.K. Romano, B. Forget, Parallel fission bank algorithm in Monte Carlo criticality calculations, Nucl. Sci. Eng. 170, 125 (2012) [CrossRef] [Google Scholar]
  9. B.C. Kiedrowski, F.B. Brown, P.P.H. Wilson, Adjoint-weighted tallies for k-eigenvalue calculations with continuous-energy Monte Carlo, Nucl. Sci. Eng. 168, 226 (2011) [CrossRef] [Google Scholar]
  10. E. Jeong, D. Lee, Development status of MCS Monte Carlo dynamics code for reactor transient analysis, RPHA 2023, Gyeongju, South Korea, October 24–26, 2023 [Google Scholar]
  11. M. Imron, D. Lee, Multi-physics Monte Carlo simulation for a pin-cell with continuous temperature and density, RPHA 2023, Gyeongju, South Korea, October 24–26, 2023 [Google Scholar]
  12. M. Pusa, J. Leppänen, Computing the matrix exponential in burnup calculations, Nucl. Sci. Eng. 164, 140 (2010) [CrossRef] [Google Scholar]
  13. A. Isotalo, V. Sahlberg, Comparison of neutronics-depletion coupling schemes for burnup calculations, Nucl. Sci. Eng. 179, 434 (2015) [CrossRef] [Google Scholar]
  14. D. Lee, J. Rhodes, K. Smith, Quadratic depletion method for gadolinium isotopes in CASMO-5, Nucl. Sci. Eng. 174, 79 (2013) [CrossRef] [Google Scholar]
  15. A.E. Isotalo, J. Leppänen, J. Dufek, Preventing xenon oscillations in Monte Carlo burnup calculations by enforcing equilibrium xenon distribution, Ann. Nucl. Energy 60, 78 (2013) [CrossRef] [Google Scholar]
  16. M. Ryu, Y.S. Jung, H.H. Cho, H.G. Joo, Solution of the BEAVRS benchmark using the nTRACER direct whole core calculation code, J. Nucl. Sci. Technol. 52, 961 (2015) [CrossRef] [Google Scholar]
  17. R.K. Salko, CTF Theory Manual (Reactor Dynamics and Fuel Management Group, Pennsylvania State University, 2014) [Google Scholar]
  18. D.J. Kelly, T.M. Sutton, S.C. Wilson, MC21 analysis of the nuclear energy agency Monte Carlo performance benchmark problem, PHYSOR 2012, Knoxville, Tennessee, USA, April 15–20, 2012 [Google Scholar]
  19. T.D.C. Nguyen, H. Lee, S. Choi, D. Lee, Validation of UNIST Monte Carlo code MCS using VERA progression problems, Nucl. Eng. Technol. 52, 878 (2020) [CrossRef] [Google Scholar]
  20. T.D.C. Nguyen, H. Lee, S. Choi, D. Lee, MCS/TH1D analysis of VERA whole-core multi-cycle depletion problems, Ann. Nucl. Energy 139, 107271 (2020) [CrossRef] [Google Scholar]
  21. J. Jang, W. Kim, S. Jeong, E. Jeong, J. Park, M. Lemaire, H. Lee, Y. Jo, P. Zhang, D. Lee, Validation of UNIST Monte Carlo code MCS for criticality safety analysis of PWR spent fuel pool and storage cask, Ann. Nucl. Energy 114, 495 (2018) [CrossRef] [Google Scholar]
  22. T.D. Long, S.G. Hong, D. Lee, Validation of UNIST Monte Carlo code MCS for criticality safety calculation with burnup credit through MOX criticality benchmark problem, Nucl. Eng. Tech. 53, 19 (2021) [CrossRef] [Google Scholar]
  23. H. Lee, J. Jang, H. Kang, W. Kim, J. Jang, D. Lee, H.C. Lee, Criticality benchmark of Monte Carlo code MCS for light water reactor fuel in transportation and storage packages, Ann. Nucl. Energy 151, 107873 (2021) [CrossRef] [Google Scholar]
  24. F. Setiawan, M. Lemaire, D. Lee, Analysis of VVER-1000 mock-up criticality experiments with nuclear data library ENDF/B-VIII.0 and Monte Carlo code MCS, Nucl. Eng. Tech. 53, 1 (2021) [CrossRef] [Google Scholar]
  25. T.Q. Tran, J. Choe, X. Du, H. Lee, D. Lee, Neutronic simulation of China experimental fast reactor start-up tests-part II: MCS code Monte Carlo calculation, Ann. Nucl. Energy 148, 107710 (2020) [CrossRef] [Google Scholar]
  26. T. Umbar, D. Lee, First criticality and uncertainty analysis of the HTR-PM using MCS, KNS Spring meeting, Jeju, South Korea, May 18–19, 2023 [Google Scholar]
  27. J. Yu, H. Lee, M. Lemaire, H. Kim, P. Zhang, D. Lee, MCS based neutronics/thermal-hydraulics/fuel-performance coupling with CTF and FRAPCON, Comput. Phys. Commun. 238, 1 (2019) [CrossRef] [Google Scholar]
  28. J. Yu, H. Lee, H. Kim, P. Zhang, D. Lee, Coupling of FRAPCON for fuel performance analysis in the Monte Carlo code MCS, Comput. Phys. Commun. 251, 106748 (2020) [CrossRef] [Google Scholar]
  29. J. Yu, H. Lee, H. Kim, P. Zhang, D. Lee, Coupled N-T/H simulation of BEAVRS cycle 1 depletion by MCS/CTF code system, Nucl. Technol. 206, 728 (2020) [CrossRef] [Google Scholar]
  30. J. Yu, H. Lee, H. Kim, P. Zhang, D. Lee, Simulation of BEAVRS benchmark cycle 2 depletion with MCS/CTF coupling system, Nucl. Eng. Technol. 52, 661 (2020) [CrossRef] [Google Scholar]
  31. J. Yu, H. Lee, M. Lemaire, H. Kim, P. Zhang, D. Lee, Fuel performance analysis of BEAVRS benchmark cycle 1 depletion with MCS/FRAPCON coupling system, Ann. Nucl. Energy 138, 107192 (2020) [CrossRef] [Google Scholar]
  32. K.J. Geelhood, W.G. Luscher, FRAPCON-4.0: Integral Assessment (Pacific Northwest National Laboratory, PNNL-19418, 2015) [Google Scholar]
  33. T.D.C. Nguyen, H. Lee, D. Lee, Use of Monte Carlo code MCS for multigroup cross section generation for fast reactor analysis, Nucl. Eng. Technol. 53, 2788 (2021) [CrossRef] [Google Scholar]
  34. T.Q. Tran, A. Cherezov, X. Du, D. Lee, Verification of a two-step code system MCS/RAST-F to fast reactor core analysis, Nucl. Eng. Technol. 54, 1789 (2022) [CrossRef] [Google Scholar]
  35. T.D.C. Nguyen, T.Q. Tran, D. Lee, Coupled neutronics/thermal-hydraulics analysis of ANTS-100e using MCS/RAST-F two-step code system, Nucl. Eng. Technol. 55, 4048 (2023) [CrossRef] [Google Scholar]
  36. T.D.C. Nguyen, D. Lee, Group constants generation by Monte Carlo code MCS for LWR analysis, Comput. Phys. Commun. 285, 108642 (2023) [CrossRef] [Google Scholar]
  37. P. Zhang, M. Lemaire, H. Lee, N. Mai, D. Lee, Development of a variance reduction scheme in the MCS Monte Carlo code, Transactions of Korean Nuclear Society Autumn Meeting, Yeosu, Korea, October 25–26, 2018 [Google Scholar]
  38. M. Lemaire, H. Lee, D. Lee, Implementation of tally convergence tests in UNIST Monte Carlo code MCS, Transactions of Korean Nuclear Society Autumn Meeting, Yeosu, Korea, October 25–26, 2018 [Google Scholar]
  39. N.N.T. Mai, P. Zhang, M. Lemaire, B. Ebiwonjumi, W. Kim, H. Lee, D. Lee, Extension of Monte Carlo code MCS to spent fuel cask shielding analysis, Int. J. Energy Res. 44, 8089 (2020) [CrossRef] [Google Scholar]
  40. M. Lemaire, H. Lee, P. Zhang, D. Lee, Interpretation of two SINBAD photon-leakage benchmarks with nuclear library ENDF/B-VIII.0 and Monte Carlo code MCS, Nucl. Eng. Technol. 52, 1355 (2020) [CrossRef] [Google Scholar]
  41. X.Y. Feng, P. Zhang, H. Lee, D. Lee, H.C. Lee, Validation of MCS code for shielding calculation using SINBAD, Nucl. Eng. Technol. 54, 3429 (2022) [CrossRef] [Google Scholar]
  42. Y. Jo, D. Lee, A study on effect of assembly power history to gamma dose rate in spent fuel pool at a short cooling time, Transactions of Korean Nuclear Society Spring Meeting, Jeju, Korea, May 18–19, 2023 [Google Scholar]
  43. ICRP, Conversion coefficients for radiological protection quantities for external radiation exposures, ICRP Publication 116, Ann. ICRP 40(2-5) (2010) [Google Scholar]
  44. Korea Electric Power Corporation and Korea Hydro & Nuclear Power Co., Ltd., APR1400 Design control document tier 2 - Chapter 12 radiation protection, US NRC, 2018 [Google Scholar]
  45. Design requirements for light water reactor fuel handling systems, ANSI/ANS 57.1-1992 [Google Scholar]
  46. Y. Jo, C. Kong, A. Cherezov, D. Lee, Sensitivity and uncertainty analysis capability in MCS for UAM benchmark. M&C 2019, Oregon USA, August 25–29, 2019 [Google Scholar]
  47. Y. Jo, V. Dos, N.N.T. Mai, H. Lee, D. Lee, Uncertainty analysis of sub-exercises in UAM-SFR benchmark with the MCS code, EPJ Web Conf. 247, 15017 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  48. M.L. Williams, CRC Handbook of Nuclear Reactors Calculations, Vol. III, Perturbation Theory for Nuclear Reactor Analysis (CRC Press, Inc., Boca Raton, 1986) [Google Scholar]
  49. H.J. Shim, C.H. Kim, Adjoint sensitivity and uncertainty analyses in Monte Carlo forward calculations. J. Nucl. Sci. Technol. 48, 1453 (2011) [CrossRef] [Google Scholar]
  50. S.H. Choi, H.J. Shim, C.H. Kim, Development of generalized perturbation theory algorithms for Monte Carlo eigenvalue calculations, Nucl. Sci. Eng. 189, 171 (2018) [CrossRef] [Google Scholar]
  51. Y. Qiu, X. Shang, X. Tang, J. Liang, K. Wang, Computing eigenvalue sensitivity coefficients to nuclear data by adjoint superhistory method and adjoint Wielandt method implemented in RMC code, Ann. Nucl. Energy 87, 228 (2016) [CrossRef] [Google Scholar]
  52. T. Yamamoto, Eigenvalue sensitivity analysis capabilities with the differential operator method in the superhistory Monte Carlo method, Ann. Nucl. Energy 112, 150 (2018) [CrossRef] [Google Scholar]
  53. F.B. Brown, Wielandt acceleration for MCNP5 Monte Carlo eigenvalue calculations. Joint International Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications (M&C+ SNA 2007), Monterey, California, 2007 [Google Scholar]
  54. S.H. Choi, H.J. Shim, Memory-efficient calculations of adjoint-weighted tallies by the Monte Carlo Wielandt method, Ann. Nucl. Energy 96, 287 (2016) [CrossRef] [Google Scholar]
  55. J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: Status, development and applications in 2013, Ann. Nucl. Energy 82, 142 (2015) [CrossRef] [Google Scholar]
  56. M. Aufiero, A. Bidaud, M. Hursin, J. Leppänen, G. Palmiotti, S. Pelloni, P. Rubiolo, A collision history-based approach to sensitivity/perturbation calculations in the continuous energy Monte Carlo code SERPENT, Ann. Nucl. Energy 85, 245 (2015) [CrossRef] [Google Scholar]
  57. Y. Jo, D. Lee, Development of an adjoint flux calculation technique for exact perturbation theory in Monte Carlo code MCS. In SNA + MC 2024, Paris, France, October 20–24, 2024 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.