Issue
EPJ Nuclear Sci. Technol.
Volume 11, 2025
Status and advances of Monte Carlo codes for particle transport simulation
Article Number 8
Number of page(s) 6
DOI https://doi.org/10.1051/epjn/2025002
Published online 04 March 2025
  1. M. Caillaud, S. Lemaire, S. Ménard, P. Rathouit, J.C. Ribes, D. Riz, SNA + MC 2013 – Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo (2014) [Google Scholar]
  2. MCNP Code Version 6.3.0 Theory & User Manual, Los Alamos National Laboratory, LA-UR-22-30006, Rev. 1 (2022) [Google Scholar]
  3. E. Brun, F. Damian, C. Diop, E. Dumonteil, F. Hugot, C. Jouanne, et al., TRIPOLI-4, CEA, EDF and AREVA reference monte carlo code, Ann. Nucl. Energy 82, 151 (2015) [CrossRef] [Google Scholar]
  4. A Message-Passing Interface Standard Version 4.0 (2021), https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf [Google Scholar]
  5. L. Dagum, R. Menon, OpenMP: an industry standard API for shared-memory programming, IEEE Comput. Sci. Eng. 5, 46 (1998) [CrossRef] [Google Scholar]
  6. B.P. Nigam, et al., Phys. Rev. 115, 491 (1959) [CrossRef] [Google Scholar]
  7. W.L. Thompson, O.L. Deutsch, T.E. Booth, Deep-Penetration Calculations, A Review of the Theory and Application of Monte Carlo Methods, in Proceedings of a Seminar-Workshop, Oak Ridge Tennessee, April 21–23, ORNL/RSIC-44 (1980) [Google Scholar]
  8. W.L. Thompson, E.D. Cashwell, The Status of Monte Carlo at Los Alamos, A Review of the Theory and Application of Monte Carlo Methods, in Proceedings of a Seminar-Workshop, Oak Ridge Tennessee, April 21–23, ORNL/RSIC-44 (1980) [Google Scholar]
  9. E. Woodcock, T. Murphy, P. Hemmings, S. Longworth, Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry, in Proc. Conf. Application of Computing Methods to Reactor Problems, ANL-7050, Argone National Laboratory (1965) [Google Scholar]
  10. L.L. Carter, E.D. Cashwell, W.M. Tatlor, Nucl. Sci. Eng. 48, 403 (1972) [CrossRef] [Google Scholar]
  11. International Handbook of Evaluated Criticality Safety Benchmark Experiments 2021, Vol. I, NEA/NSC/DOC(95)03 [Google Scholar]
  12. M.B. Chadwick, et al., ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data, Nucl. Data Sheets 112, 2887 (2011) [CrossRef] [Google Scholar]
  13. S. Kitsos, et al., Nucl. Sci. Eng., 123, 215 (1996) [CrossRef] [Google Scholar]
  14. D. Riz, M. Caillaud, Proc. ANS Physor, Pittsburgh, USA (2000) [Google Scholar]
  15. C. Toccoli, et al., Nucl. Technology, 168, 933 (2009) [CrossRef] [Google Scholar]
  16. T.K. Tuyet, et al., ICRS14/RPSD (2022) [Google Scholar]
  17. A. Sari, et al. (to be published) [Google Scholar]
  18. T. Sato, et al., Recent improvements of the Particle and Heavy Ion Transport code System – PHITS version 3.33, J. Nucl. Sci. Technol. 61, 127 (2024) [CrossRef] [Google Scholar]
  19. S. Agostinelli, et al., Nucl. Instrum. Meth. A 506, 250 (2003) [CrossRef] [Google Scholar]
  20. J. Allison, et al., IEEE Trans. Nucl. Sci. 53, 270 (2006) [Google Scholar]
  21. J. Allison, et al., Nucl. Instrum. Meth. A 835, 186(2016) [CrossRef] [Google Scholar]
  22. G.C. Pomraning, Linear Kinetic Theory and Particle Transport in Stochastic Mixtures (World Scientific Publishing, NJ, USA, 1991) [CrossRef] [Google Scholar]
  23. G.C. Pomraning, Adv. Nuc. Sci. Tech. 24, 47 (1996) [CrossRef] [Google Scholar]
  24. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer-Verlag, New York, USA, 2013) [Google Scholar]
  25. O. Haran, D. Shvarts, R., Thieberger, Phys. Rev. E 61, 6183 (2000) [CrossRef] [Google Scholar]
  26. G.B. Zimmerman, Lawrence Livermore National Laboratory Report UCRL-JC-105616 (1990) [Google Scholar]
  27. G.B. Zimmerman, M.L. Adams, Trans. Am. Nucl. Soc. 66, 287 (1991) [Google Scholar]
  28. D.C. Sahni, J. Math. Phys. 30, 1554 (1989) [CrossRef] [Google Scholar]
  29. D.C. Sahni, Ann. Nucl. Energy 16, 397 (1989) [CrossRef] [Google Scholar]
  30. C. Larmier, Stochastic Particle Transport in Disordered Media: Beyond the Boltzmann Equation, Université Paris-Saclay, France (2018) [Google Scholar]
  31. C. Larmier, F.-X. Hugot, F. Malvagi, A. Mazzolo, A. Zoia, Benchmark solutions for d-dimensional Markov binary mixtures, J. Quant. Spectrosc. Radiat. Transf. 189, 133 (2017) [CrossRef] [Google Scholar]
  32. M.A. Kowalski, C. Larmier, F. Madiot, J. Durand, S. Lemaire, A. Zoia, Particle transport in Markov media with spatial gradients: Comparison between reference solutions and Chord Length Sampling, J. Quant. Spectrosc. Radiat. Transf. 286, 108185 (2022) [CrossRef] [Google Scholar]
  33. Internal report CEA/DAM [Google Scholar]
  34. C. Larmier, A. Lam, P. Brantley, F. Malvagi, T. Palmer, A. Zoia, Monte Carlo Chord Length Sampling for d-dimensional Markov binary mixtures, J. Quant. Spectrosc. Radiat. Transf. 204, 256 (2018) [CrossRef] [Google Scholar]
  35. C. Larmier, A. Zoia, F. Malvagi, E. Dumonteil, A. Mazzolo, Poisson-Box Sampling algorithm for three-dimensional Markov binary mixtures, J. Quant. Spectrosc. Radiat. Transf. 206, 70 (2018) [CrossRef] [Google Scholar]
  36. A. Tentori, C. Larmier, J. Durand, B. Cochet, A. Zoia, Phys. Rev. E 109, 035302 (2024) [CrossRef] [Google Scholar]
  37. A. Sood, R.A. Forster, D.K. Parsons, Analytical Benchmark Test Set for Criticality Code Verification, LA-UR-01-3082 (2001) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.