Open Access
Issue |
EPJ Nuclear Sci. Technol.
Volume 11, 2025
|
|
---|---|---|
Article Number | 23 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/epjn/2025024 | |
Published online | 04 June 2025 |
- R.R. Ferber, G.N. Hamilton, Silicon carbide high-temperature neutron detectors for reactor instrumentation, Nucl. Appl. 2, 3 (1966) [Google Scholar]
- J. Coutinho, V.J.B. Torres, I. Capan, T. Brodar, Z. Ereš, R. Bernat, V. Radulović, K. Ambrožič, L. Snoj, Ž. Pastuović, A. Sarbutt, T. Ohshima, Y. Yamazaki, T. Makino, Silicon carbide diodes for neutron detection, Nucl. Instrum. Methods Phys. Res., Sect. A 986, 164793 (2021) [CrossRef] [Google Scholar]
- I. Capan, Wide-Bandgap semiconductors for radiation detection: A review, Materials 17, 1147 (2024) [CrossRef] [Google Scholar]
- M. De Napoli, SiC detectors: A review on the use of silicon carbide as radiation detection material, Front. Phys. 10, 898833 (2022) [CrossRef] [Google Scholar]
- R. Bedogni, A. Calamida, A.I. Castro Campoy, A. Fontanilla, J.M. Gomez-Ros, V. Monti, E. Mafucci, N. Protti, S. Altieri, A. Pietropaolo, On neutron detection with silicon carbide and its resistance to large accumulated fluence, Eur. Phys. J. Plus 137, 1358 (2022) [CrossRef] [Google Scholar]
- C. Raynaud, Propriétés physiques et électroniques du carbure de silicium (SiC), Techniques de l’Ingénieur (Éditions Techniques de l’ingénieur, Energie, D3119 V1, 1, 2007) [Google Scholar]
- A. Owens, Semiconductor Radiation Detectors, 1st edn. (CRC press, 2019) [CrossRef] [Google Scholar]
- M. Rebai, D. Rigamonti, S. Cancelli, G. Croci, G. Gorini, E. Perelli Cippo, O. Putignano, M. Tardocchi, C. Altana, M. Angelone, G. Borghi, M. Boscardin, C. Ciampi, G.A.P. Cirrone, A. Fazzi, D. Giove, L. Labate, G. Lanzalone, F. La Via, S. Loreti, A. Muoio, P. Ottanelli, G. Pasquali, M. Pillon, S.M.R. Puglia, A. Santangelo, A. Trifiro, S. Tudisco, New thick silicon carbide detectors: Response to 14 MeV neutrons and comparison with single-crystal diamonds, Nucl. Instrum. Methods Phys. Res., Sect. A 946, 162637 (2019) [CrossRef] [Google Scholar]
- P. Kandlakunta, C. Tan, N. Smith, S. Xue, N. Taylor, R. Gregory Downing, V. Hlinka, L.R. Cao, Silicon carbide detectors for high flux neutron monitoring at near-core locations, Nucl. Instrum. Methods Phys. Res., Sect. A 953, 163110 (2020) [CrossRef] [Google Scholar]
- V. Radulović, K. Ambrožič, I. Capan, R. Bernat, Z. Ereš, Ž. Pastuović, A. Sarbutt, T. Ohshima, Y. Yamazaki, T. Makino, J. Coutinho, L. Snoj, Silicon carbide neutron detector prototype testing at the JSI TRIGA reactor for enhanced border and ports security, EPJ Web of Conf. 247, 16002 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
- J. Park, J. Son, Y.K. Kim, In-core power measurement using SiC semiconductor detector, J. Korean Phys. Soc. 76, 4 (2020) [Google Scholar]
- O. Obraztsova, L. Ottaviani, A. Klix, T. Döring, O. Palais, A. Lyoussi, Comparing the response of a SiC and a sCVD Diamond detectors to 14-MeV neutron radiation, IEEE Trans. Nucl. Sci. 65, 9 (2018) [Google Scholar]
- O. Obraztsova, L. Ottaviani, B. Geslot, G. de Izarra, O. Palais, A. Lyoussi, W. Vervisch, Comparison between silicon-carbide and diamond for thermal neutron detection at room temperature, IEEE Trans. Nucl. Sci. 67, 5 (2020) [Google Scholar]
- F. Issa, V. Vervisch, L. Ottaviani, D. Szalkai, L. Vermeeren, A. Lyoussi, A. Kuznetsov, M. Lazar, A. Klix, O. Palais, A. Hallen, Radiation silicon carbide detectors based on ion implantation of boron, IEEE Trans. Nucl. Sci. 61, 4 (2014) [Google Scholar]
- A. Lyoussi et al., I__SMART a collaborative project on Innovative Sensor for Material Ageing and Radiation Testing: European Innovative Project for SiC applications in harsh media, KIC_Innoenergy, CCAV, I_SMART Proposal/Exhibit 1 (2012) [Google Scholar]
- Q. Potiron, C. Destouches, L. Dubus, M. Houry, O. Llido, A. Lyoussi, L. Ottaviani, C. Reynard-Carette, F.H. Ruddy, Estimation of the fast-neutron fluence rate with a 4H-SiC-based detector in a 14.1-MeV mono-energetic field, IEEE Trans. Nucl. Sci. 71, 2 (2024) [Google Scholar]
- V. Valero, Etude de détections neutroniques, photoniques et de débit de dose absorbée en conditions sévères par détecteurs semi-conducteurs et capteurs calorimétriques, Ph.D. thesis, Aix-Marseille Université, 2023 [Google Scholar]
- M. Ikeda, H. Matsunami, T. Tanaka, Site effect on the impurity levels in 4H, 6H, and 15R SiC, Phys. Rev. B 22, 6 (1980) [Google Scholar]
- T. Kimoto, J.A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications (Wiley-IEEE Press, 2014) [CrossRef] [Google Scholar]
- O. Obraztsova, Comparaison du Diamant et du Carbure de Silicium (SiC) pour la détection de neutrons en milieux nucléaires, Ph.D. thesis, Aix-Marseille Université, 2018 [Google Scholar]
- J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Matter, SRIM Software, version 2013, available at: http://www.srim.org [Google Scholar]
- V. Valero, L. Ottaviani, A. Lyoussi, V. Radulović, L. Snoj, A. Volte, M. Carette, C. Reynard-Carette, 3D thermal and radiation-matter interaction simulations of a SiC solid-state detector for neutron flux measurements in JSI TRIGA Mark II research reactor, EPJ Web of Conf. 253, 04009 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
- V. Valero, L. Ottaviani, A. Lyoussi, V. Radulović, L. Snoj, A. Volte, M. Carette, C. Reynard-Carette, Thermal Simulations of a New SiC Detector Design for Neutron Measurements in JSI Nuclear Research Reactor, Mater. Sci. Forum 1062, 619 (2022) [CrossRef] [Google Scholar]
- M. Ravnik, Description of TRIGA Reactor, Technical report, 2001 [Google Scholar]
- L. Snoj, G. Žerovnik, A. Trkov, Computational analysis of irradiation facilities at the JSI TRIGA reactor, Appl. Radiat. Isot. 70, 3 (2012) [Google Scholar]
- K. Ambrožič, G. Žerovnik, L. Snoj, Computational analysis of the dose rates at JSI TRIGA reactor irradiation facilities, Appl. Radiat. Isot. 130, 140 (2017) [CrossRef] [Google Scholar]
- H. Carcreff, V. Radulović, D. Fourmentel, K. Ambrožič, C. Destouches, L. Snoj, N. Thiollay, Nuclear heating measurements for fusion and fission relevant materials in the JSI TRIGA reactor, Fusion Eng. Des. 179, 113136 (2022) [CrossRef] [Google Scholar]
- F. Ruddy, L. Ottaviani, A. Lyoussi, C. Destouches, O. Palais, C. Reynard-Carette, Silicon carbide neutron detectors for harsh nuclear environments: A review of the state of the art, IEEE Trans. Nucl. Sci. 69, 4 (2022) [Google Scholar]
- F.H. Ruddy, S.K. Chaudhuri, K.C. Mandal, A review of the effects of fast-neutron irradiation on the performance of 4H SiC Schottky Barrier detectors, IEEE Trans. Nucl. Sci. 71, 5 (2024) [Google Scholar]
- P. Kavrigin, P. Finocchiaro, E. Griesmayer, E. Jericha, A. Pappalardo, C. Weiss, Pulse-shape analysis for gamma background rejection in thermal Neutron radiation using CVD diamond detectors, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 88 (2015) [Google Scholar]
- F.H. Ruddy, A. Dulloo, J. Seidel, Study of the radiation resistance of silicon carbide radiation detectors, Trans. Am. Nucl. Soc. 90, 1 (2004) [Google Scholar]
- J.W. Kleppinger, S.K. Chaudhuri, O. Karadavut, D.L.P. Watson, D.S. McGregor, Deep-level transient spectroscopy and radiation detection performance studies on neutron irradiated 250-μm-thick 4H-SiC epitaxial Layers, IEEE Trans. Nucl. Sci. 69, 8 (2022) [Google Scholar]
- F. Nava, A. Castaldini, A. Cavallini, P. Errani, V. Cindro, Radiation detection properties of 4H-SiC Schottky Diodes irradiated up to 1016 n/cm2 by 1 MeV neutrons, IEEE Trans. Nucl. Sci. 53, 5 (2006) [Google Scholar]
- T. Ohshima, Heavy ion irradiation response of silicon carbide particle detectors, in ANIMMA 2023 conference presentation (Lucca, Italy, 2023) [Google Scholar]
- L. Liu, F. Li, S. Bai, P. Jin, X. Cao, X. Ouyang, Silicon carbide PIN diode detectors used in harsh neutron irradiation, Sens. Actuators A Phys. 280, 245 (2018) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.