Open Access
Issue
EPJ Nuclear Sci. Technol.
Volume 11, 2025
Article Number 22
Number of page(s) 17
DOI https://doi.org/10.1051/epjn/2025005
Published online 04 June 2025
  1. TRIPOLI-4®, CEA, EDF and AREVA reference Monte Carlo code, https://doi.org/10.1016/j.anucene.2014.07.053 [Google Scholar]
  2. TRIPOLI-4®, Version 4 Manuel de l’utilisateur. Rapport CEA-R-6170 (2008); in French [Google Scholar]
  3. DARWIN: An Evolution Code System for a Large Range of Applications, CEA, https://doi.org/10.1080/00223131.2000.10875009 [Google Scholar]
  4. MENDEL depletion code, https://doi.org/10.1051/snamc/201402409 [Google Scholar]
  5. R. Bodu, H. Bouzigues, N. Morrin, J.P. Pfiffelmann, Sur l’existence d’anomalies isotopiques rencontrées dans l’uranium du Gabon, C. R. Acad. Sci., Paris 275, 1731 (1972) [Google Scholar]
  6. J.-C. Nimal, CEA, Septembre 1972; in French (unpublished internal report) [Google Scholar]
  7. G. Vendryes, Le “père” des réacteurs à neutrons rapides; préface de Y. Brechet. Textes rassemblés sous la direction de C. Clouet d’Orval. Collection: Les grands acteurs du CEA. Un chapitre est consacré au phénomène d’Oklo [Google Scholar]
  8. J.-L. Nigon, CEA, Septembre 1972; in French (unpublished internal report) [Google Scholar]
  9. A. El Albani et al., Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago, Nature 466, 100 (2010), https://doi.org/10.1038/nature09166 [CrossRef] [Google Scholar]
  10. P.K. Kuroda, On the Nuclear Physical Stability of the Uranium Minerals, J. Chem. Phys. 25, 781 (1956) [CrossRef] [Google Scholar]
  11. P.K. Kuroda, On the Infinite Multiplication Constant and the Age of the Uranium Minerals, J. Chem. Phys. 25, 1295 (1956) [CrossRef] [Google Scholar]
  12. J. Noetzlin, Volcanisme et chimie nucléaire, C. R. Acad. Sci. 208, 1100 (1939)(séance du 27 mars 1939) [Google Scholar]
  13. J.F. Dozol Ichlera, (Strasbourg June 2022) From routine sample measurements in CEA to the Oklo phenomenon. Radiation Protection Dosimetry, Vol. 199, Issue 18, November 2023, pp. 2258–2261, https://doi.org/10.1093/rpd/ncad014 [Google Scholar]
  14. R. Naudet, Oklo: des réacteurs nucléaires fossiles – étude physique, Paris, Éditions Eyrolles, Série Synthèses, 1991; in French [Google Scholar]
  15. F. Gauthier Lafaye Ichlera, (Strasbourg June 2022) The Oklo phenomenon, first questions, first answers. Radiation Protection Dosimetry, Vol. 199, Issue 18, November 2023, pp. 2251–2257, https://doi.org/10.1093/rpd/ncad044 [CrossRef] [Google Scholar]
  16. J.C. Nimal Ichlera, (Strasbourg June 2022) Historical simulations of Oklo cores. Radiation Protection Dosimetry, Vol. 199, Issue 18, November 2023, pp. 2262–2268, https://doi.org/10.1093/rpd/ncad043 [CrossRef] [Google Scholar]
  17. S.E. Bentridi Ichlera, (Strasbourg June 2022) The Influence of some rare earth elements as neutron absorbers on the inception of Oklo natural reactors. Radiation Protection Dosimetry, Vol. 199, Issue 18, November 2023, pp. 2269–2274, https://doi.org/10.1093/rpd/ncad048 [CrossRef] [Google Scholar]
  18. B.J.P. Gall Ichlera, (Strasbourg June 2022) Parallel between natural Oklo cores and industrial reactors operating. Radiation Protection Dosimetry, Vol. 199, Issue 18, November 2023, pp. 2279–2287, https://doi.org/10.1093/rpd/ncad034 [CrossRef] [Google Scholar]
  19. A. El Albani Ichlera, (Strasbourg June 2022) The Gabonionta: great Oxidation Event, reactors and life. Special session Oklo’50 Anniversary, 10th International Conference on High Level Environmental Radiation Areas, Strasbourg, 27–30 June 2022, https://indico.in2p3.fr/event/19295/attachments/54322/102387/programme%20ICHLERA%2020220627-Chair.pdf [Google Scholar]
  20. D. Louvat Ichlera (Strasbourg June 2022) Oklo natural analogue of radioactive waste disposal, summary of European Commission projects’results. Special session Oklo’50 Anniversary, 10th International Conference on High Level Environmental Radiation Areas, Strasbourg, 27–30 June 2022, https://indico.in2p3.fr/event/19295/attachments/54322/102387/programme%20ICHLERA%2020220627-Chair.pdf [Google Scholar]
  21. S.-E. Bentridi, B. Gall, F. Gauthiet-Lafaye, A. Seghour, D.E. Medjadi, Inception and evolution of Oklo natural reactors, C. R. Geosci. 343, 738 (2011) [CrossRef] [Google Scholar]
  22. P. Girard, Compte rendu: SFEN CR Conf 17-10-2018-MRS; in French [Google Scholar]
  23. F. Weber, Une série précambrienne du Gabon: le Francevillien, sédimentologie, géochimie, relations avec les minéraux associés Thèse soutenue le 9 Octobre 1969. Rapport CEA-R-4054 (1971); in French [Google Scholar]
  24. F. Gauthier-Lafaye, F. Weber, Natural nuclear fission reactors: time constraints for occurrence, and their relation to uranium and manganese deposits and to the evolution of the atmosphere, Precamb. Res. 120, 81 (2003) [CrossRef] [Google Scholar]
  25. F. Gauthier-Lafaye, F. Weber, Natural nuclear fission reactors: time constraints for occurrence, and their relation to uranium and manganese deposits and to the evolution of the atmosphere Centre de Géochimie de la Surface, EOST-UMR7517, CNRS-ULP, 1, rue Blessig, 67084 Strasbourg Cedex, France [Google Scholar]
  26. A. El Albani, R. Macchiarelli, A. Meunier, Aux origines de la Vie. Une nouvelle histoire de l’Evolution. Dunod 2016 [Google Scholar]
  27. A. El Albani, R. Macchiarelli, A. Meunier, Comment tout a commencé sur la Terre. Le récit d’une incroyable découverte Editions humen Sciences/Humensis, 2019 (dessins par ADELINAA) [Google Scholar]
  28. L. Blanchard, CEA/DRF (private communications) [Google Scholar]
  29. S. Lim, J.-H. Jung, L. Blanchard, A. De groot, FEMS Microbiol. Rev. 43, 19 (2019); in French. Communiqué de presse CNRS/INSB et CEA/DRF: Les ressources insoupçonnées de la nature pour résister aux radiations [CrossRef] [Google Scholar]
  30. A. Beauger, S. Larrue, GEOLAB-CNRS/Université Clermont Auvergne/Université Limoges. Effet de la radioactivité naturelle sur les diatomées des sources minérales; in French, https://inee.cnrs.fr/fr/cnrsinfo/leffet-de-la-radioactivite-naturelle-sur-les-diatomees-des-sources-minerales [Google Scholar]
  31. F. Millan, A. Beauger et al., The effect of natural radioactivity on diatom communities in mineral springs, Bot. Lett. 167, 95 (2020), https://doi.org/10.1080/23818107.2019.1691051 [CrossRef] [Google Scholar]
  32. E. Dumonteil, CEA/DRF/IRFU/DPhN) (private communication) [Google Scholar]
  33. P.C.M. Petit, C. Rivasseau et al., Incroyable découverte: Variovorax, une bactérie qui vit au cœur d’un réacteur nucléaire en fonctionnement! (réacteur OSIRIS), https://joliot.cea.fr/drf/joliot/Pages/Actualites/Scientifiques/2020/Variovorax-bacterie-vivant-c%C5%93ur-reacteur-nucleaire.aspx [Google Scholar]
  34. Direct Meta-Analyses Reveal Unexpected Microbial Life in the Highly Radioactive Water of an Operating Nuclear Reactor Core, Microorganisms, 2020, 8, 1857; https://doi.org/10.3390/microorganisms8121857 [CrossRef] [Google Scholar]
  35. A. Gourgiotis, IRSN/PSE-ENV/SEDRE/LELI (private communication) [Google Scholar]
  36. C. Villagrasa, et coll, Geant4-DNA simulation of DNA damage caused by direct and indirect effects and comparison with biological data. ICRS-13 & RPSD-2016 conference [Google Scholar]
  37. S. Meylan, Développement d’un outil de simulation multi-échelle au calcul des dommages radio-induits précoces dans des cellules exposées à des irradiations d’ions légers (proton et alpha) Thèse soutenue le 21 octobre 2016; in French [Google Scholar]
  38. S. Agostinelli et al., Geant4 – A simulation toolkit, Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 506, 250 (2003) [CrossRef] [Google Scholar]
  39. A. Santamarina, D. Bernard, P. Blaise et al., The JEFF-3.1. 1 nuclear data library, JEFF Rep. 22, 2 (2009) [Google Scholar]
  40. S.T. Perkins, D.E. Cullen, S.M. Selzer, Tables and Graphs of Electron-Interaction Cross Section from 10 eV to 100 GeV Derived from the LLNL Evaluated Electron Data Library (EEDL), Z=1−100, Lawrence Livermore National Laboratory, USA, UCRL-50400, Vol. 31, November 1991; DOI: 10.2172/5691165 [Google Scholar]
  41. H. Metivier, coordinateur, Radioprotection et ingénierie nucléaire; collection Génie Atomique; INSTN (EDP sciences); in French [Google Scholar]
  42. B. Pritychenko, S.F. Mughabghab, Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries, Nucl. Data Sheets 113, 3120 (2012) [CrossRef] [Google Scholar]
  43. J.F. Dozol, M. Neuilly, Analyse isotopique des terres rares contenues dans le minerai d’OKLO Rapport IAEA-SM-204/29 (Libreville 1975); in French [Google Scholar]
  44. R. Naudet, C. Renson, Résultats des analyses de teneurs isotopiques de l’Uranium. Rapport IAEA-SM-204/23 (Libreville 1975) [Google Scholar]
  45. IAEA.org fission yields. Source JEFF 3.1.1 [Google Scholar]
  46. B. Gall (University of Strasbourg CNRS, IPHC UMR 7178) (private communication) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.