Issue |
EPJ Nuclear Sci. Technol.
Volume 10, 2024
Status and advances of Monte Carlo codes for particle transport simulation
|
|
---|---|---|
Article Number | 20 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/epjn/2024023 | |
Published online | 02 December 2024 |
- G. Battistoni et al., Overview of the FLUKA code. Ann. Nuclear Energy 82, 10 (2015) [CrossRef] [Google Scholar]
- C. Ahdida et al., New capabilities of the FLUKA multi-purpose code. Front. Phys. 9, 788253 (2022) [CrossRef] [Google Scholar]
- The official CERN FLUKA website, https://fluka.cern [Google Scholar]
- V. Vlachoudis et al., Recent developments in the point wise neutron treatment for FLUKA v4. EPJ Web of Conf. 284, 03021 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
- D. Cullen, PREPRO 2023, IAEA: IAEA-NDS-0241, 2023 [Google Scholar]
- S. Agostinelli et al., Geant4-a simulation toolkit. Nucl. Inst. Meth. A 506, 250 (2003) [CrossRef] [Google Scholar]
- J. Allison et al., Geant4 developments and applications tions. IEEE Trans. Nucl. Sci. 53, 270 (2006) [Google Scholar]
- J. Allison et al., Recent developments in Geant4. Nucl. Inst. Meth. A 835, 186 (2016) [CrossRef] [Google Scholar]
- IAEA nuclear data services online resource, Evaluated neutron cross section libraries for the Geant4 code (v2.0, 17/05/2018), https://www-nds.iaea.org/geant4/ [Google Scholar]
- A.C. Wahl, Systematics of Fission-product Yields Tech. Rep., 2002 (Los Alamos National Lab.) [Google Scholar]
- M. Widorski, D. Bozzato, R. Froeschl, V. Kouskoura, FLUKAVAL - A validation framework for the FLUKA radiation transport Monte Carlo code, in EPJ Web of Conferences, Vol. 284 (2023) [Google Scholar]
- A.-G. Serban, A. Coronetti, R. García Alía, F. Salvat Pujol, Nuclear elastic scattering of protons below 250 MeV in FLUKA v4-4.0 and its role in single-event-upset production in electronics, Comput. Phys. Commun. 303, 109276 (2024) [CrossRef] [Google Scholar]
- J. Ranft, Estimation of radiation problems around high-energy accelerators using calculations of the hadronic cascade in matter. Part. Accel. 3, 129 (1972) [Google Scholar]
- A.J. Koning, J.P. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV, Nuc. Phys. A 713, 231 (2003) [CrossRef] [Google Scholar]
- F. Salvat, J.M. Fernandez-Varea, RADIAL: A Fortran subroutine package for the solution of the radial Schrodinger and Dirac wave equations, Comp. Phys. Comm. 240, 165 (2019) [CrossRef] [Google Scholar]
- N. Otuka et al., Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between Nuclear Reaction Data Centres (NRDC), Nucl. Data Sheets 120, 272 (2014) [CrossRef] [Google Scholar]
- V. Zerkin, B. Pritychenko, The experimental nuclear reaction data (EXFOR): Extended computer database and Web retrieval system. Nucl. Instrum. Meth. A 888, 31 (2018) [CrossRef] [Google Scholar]
- I.M. Dremin, Elastic scattering of hadrons. Phys. Uspekhi 56, 3 (2013) [CrossRef] [Google Scholar]
- V.M. Grichine, Geant4 hadron elastic diffuse model. Comp. Phys. Comm. 181, 921 (2010) [CrossRef] [Google Scholar]
- A. Ferrari, P. Sala, The physics of high energy reactions, in Proc. Workshop on Nuclear Reaction Data and Nuclear Reactor Physics, Design and Safety (World Scientific, 1998), p. 424 [Google Scholar]
- A. Coronetti et al, Assessment of Proton Direct Ionization for the Radiation Hardness Assurance of Deep Submicron SRAMs Used in Space Applications, IEEE Trans. Nucl. Sci. 68, 937 (2021) [CrossRef] [Google Scholar]
- A. Coronetti, Relevance and guidelines of radiation effect testing beyond the standards for electronic devices and systems used in space and at accelerators PhD thesis (University of Jyväskylä, 2021), https://cds.cern.ch/record/2799812/files/CERN-THESIS-2021-255.pdf [Google Scholar]
- N. Verbeek et al., Single pencil beam benchmark of a module for Monte Carlo simulation of proton transport in the PENELOPE code, Med. Phys. 48, 456 (2021) [CrossRef] [Google Scholar]
- D.C. Hall et al., Validation of nuclear models in Geant4 using the dose distribution of a 177 MeV proton pencil beam, Phys. Med. Biol. 61, N1 (2015) [Google Scholar]
- I. Agapov et al., Future Circular Lepton Collider FCC-ee: Overview and Status, 2022, ArXiv preprint [arXiv: 2203.08310] [physics.acc-ph] [Google Scholar]
- B. Humann, FCC-ee Radiation Challenges and Mitigation Measures, Ph.D. Thesis, TU Vienna, 2023, https://cds.cern.ch/record/2879400 [Google Scholar]
- C. Accettura et al., Towards a muon collider, Eur. Phys. J. C 83, 864 (2023) [Google Scholar]
- D. Calzolari et al., Radiation load studies for superconducting dipole magnets in a 10 TeV Muon Collider, in Proc. IPAC'22 Bangkok, Thailand (2022), pp. 1671–1674 [Google Scholar]
- H. Esbensen et al., Random and channeled energy loss in thin germanium and silicon crystals for positive and negative 2-15-GeV/c pions, kaons, and protons, Phys. Rev. B 18, 1039 (1978) [CrossRef] [Google Scholar]
- K. Nordlund et al., Improving atomic displacement and replacement calculations with physically realistic damage models, Nat. Commun. 9, 1084 (2018) [CrossRef] [Google Scholar]
- ENSDF database online resource, https://www.nndc.bnl.gov/ensdf/ [Google Scholar]
- RIPL database online resource, https://www-nds.iaea.org/RIPL-1/ [Google Scholar]
- P. Schoofs, Towards a modernized physics database for FLUKA, in Proc. SNA+MC 24, Paris, France (2024) [Google Scholar]
- A. Mereghetti et al., SixTrack-FLUKA active coupling for the upgrade of the SPS scrapers, Conf. Proc. 130512, WEPEA064 (2013) [Google Scholar]
- E. Skordis et al., FLUKA coupling to sixtrack, CERN Yellow Rep. Conf. Proc. 2, 17 (2018) [Google Scholar]
- F. Van der Veken et al., Recent developments with the new tools for collimation simulations in Xsuite, in Proc. 68th Adv. Beam Dyn. Workshop High-Intensity High-Brightness Hadron Beams Oct. 9-13, 2023 (2024), pp. 474–478 [Google Scholar]
- A. Mereghetti, R. Versaci, V. Boccone, F. Cerutti, V. Vlachoudis, The fluka linebuilder and element database: tools for building complex models of accelerators beam lines, in Conf. Proc. (2012), Vol. 1205201, p. WEPPD071 [Google Scholar]
- V. Vlachoudis, FLAIR: A powerful but user friendly graphical interface for FLUKA, in Proc. Int. Conf. on Mathematics, Computational Methods and Reactor Physics (2009) [Google Scholar]
- V. Vlachoudis, FLAIR3 - recasting simulation experiences with the Advanced Interface for FLUKA and other Monte Carlo codes, in Proc. SNA+MC 24, Paris, France (2024) [Google Scholar]
- R. Chytracek, J. McCormick, W. Pokorski, G. Santin, Geometry description markup language for physics simulation and analysis applications, IEEE Trans. Nucl. Sci. 53, 2892 (2006) [CrossRef] [Google Scholar]
- F. Cerutti et al., Low energy nucleus-nucleus reactions: the BME approach and its interface with FLUKA, in Proceedings of the 11th International Conference on Nuclear Reaction Mechanisms (2006) [Google Scholar]
- H. Sorge, H. Stöcker, W. Greiner, Poincaré invariant Hamiltonian dynamics: Modelling multihadronic interactions in a phase space approach, Ann. Phys. 192, 266 (1989) [CrossRef] [Google Scholar]
- V. Andersen et al., The FLUKA code for space applications: recent developments, Adv. Space Res. 34, 1302 (2004) [CrossRef] [Google Scholar]
- S. Roesler, R. Engel, J. Ranft, The monte carlo event generator DPMJET-III, in Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications: Proceedings of the Monte Carlo 2000 Conference, Lisbon, 23-26 October 2000 (2001), pp. 1033–1038 [Google Scholar]
- A. Fedynitch, Cascade equations and hadronic interactions at very high energies Ph.D. Thesis (KIT, Karlsruhe,Dept. Phys., 2015), http://cds.cern.ch/record/2231593/files/CERN-THESIS-2015-371.pdf. [Google Scholar]
- H. Vincke, C. Theis, ActiWiz - optimizing your nuclide inventory at proton accelerators with a computer code, Prog. Nucl. Sci. Tech. 4, 228 (2014) [CrossRef] [Google Scholar]
- H. Vincke, C. Theis, ActiWiz 3–an overview of the latest developments and their application, J. Phys. Conf. Ser. 1046, 012007 (2018) [CrossRef] [Google Scholar]
- D. Lucsányi et al., G4SEE: A Geant4-based single event effect simulation toolkit and its validation through monoenergetic neutron measurements, IEEE Trans. Nucl. Sci. 69, 273 (2022) [CrossRef] [Google Scholar]
- J.A.P. Rodrìguez, Commissioning of the nTOFEAR2 facility with the third-generation target and the related Monte Carlo simulations with Geant4, Ph.D. Thesis, Universitat de Sevilla, 2024 [Google Scholar]
- A.D. Servelle, Bridging Monte Carlo Worlds: A New Framework for Accelerator Physics Simulations Applied on Shielding and Machine Protection Studies, Ph.D. Thesis, EPFL, 2024 [Google Scholar]
- F. Ballarini et al., The physics of the FLUKA code: Recent developments, Adv. Space Res. 40, 1339 (2007) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.