Issue
EPJ Nuclear Sci. Technol.
Volume 10, 2024
Status and advances of Monte Carlo codes for particle transport simulation
Article Number 19
Number of page(s) 7
DOI https://doi.org/10.1051/epjn/2024025
Published online 28 November 2024
  1. R. Procassini, J. Taylor, I. Corey, J. Rogers, Design, Implementation and testing of mercury: a parallel monte carlo transport code, in Proceedings of M &C 2003 (Gatlinburg, TN, USA, 2003) [Google Scholar]
  2. J.A. Fleck, J.D. Cummings, J. Comput. Phys. 8, 313 (1971) [NASA ADS] [CrossRef] [Google Scholar]
  3. P.S. Brantley, N.A. Gentile, M.A. Lambert, M.S. McKinley, M.J. O’Brien, J.A. Walsh, A new implicit monte carlo thermal photon transport capability developed using shared monte carlo infrastructure, in Proceedings of M &C 2019 (Portland, OR, USA, 2019) [Google Scholar]
  4. R. Procassini, D. Cullen, G. Greenman, C. Hagmann, Verification and validation of mercury: a modern, monte carlo particle transport code, in Proceedings of MC2005 (Chattanooga, TN, USA, 2005) [Google Scholar]
  5. R. Procassini, J. Taylor, S. McKinley, G. Greenman, D. Cullen, M. O’Brien, B. Beck, C. Hagmann, Update on the development and validation of mercury: a modern, Monte Carlo particle transport code, in Proceedings of M &C 2005 (Avignon, France, 2005) [Google Scholar]
  6. R. Procassini, D. Cullen, G. Greenman, C. Hagmann, K. Kramer, S. McKinley, M. O’Brien, J. Taylor, New Capabilities in mercury: A modern Monte Carlo particle transport code, in Proceedings of M &C + SNA 2007 (Monterey, California, USA, 2007) [Google Scholar]
  7. R. Procassini, P. Brantley, S. Dawson, G. Greenman, M.S. McKinley, M. O’Brien, S. Sepke, D. Stevens, B. Beck, C. Hagmann, New Features of the mercury Monte Carlo Particle transport code, in Proceedings of M &C + SNA 2010 (Tokyo, Japan, 2010) [Google Scholar]
  8. P.S. Brantley, S.A. Dawson, M.S. McKinley, M.J. O’Brien, D.E. Stevens, B.R. Beck, E.D. Jurgenson, C.A. Ebbers, J.M. Hall, Recent advances in the mercury Monte Carlo particle transport code, in Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M &C 2013) (Sun Valley, Idaho, 2013) [Google Scholar]
  9. P.S. Brantley, S.A. Dawson, M.S. McKinley, M.J. O’Brien, D.E. Stevens, B.R. Beck, E.D. Brooks III, Advanced Computing architecture challenges for the mercury Monte Carlo particle transport project, in Proceedings of ANS MC2015 - Joint International Conference on Mathematics and Computation (M &C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method (Nashville, Tennessee, 2015) [Google Scholar]
  10. P.S. Brantley, R.C. Bleile, S.A. Dawson, N.A. Gentile, M.S. McKinley, M.J. O’Brien, M.M. Pozulp, D.F. Richards, D.E. Stevens, J.A. Walsh, LLNL Monte Carlo transport research efforts for advanced computing architectures, in Proceedings of M &C 2017 (Jeju, Korea, 2017) [Google Scholar]
  11. G.I. Bell, S. Glasstone, Nuclear Reactor Theory edited by Van Nostrand Reinhold Company (University of Michigan 1970) [Google Scholar]
  12. J.J. Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis 1st edn. (Wiley, 1976) [Google Scholar]
  13. J.J. Duderstadt, W.R. Martin, Transport Theory (Wiley, 1979) [Google Scholar]
  14. E.E. Lewis, W.F. Miller, Computational Methods of Neutron Transport (Wiley, 1984) [Google Scholar]
  15. G.M. Greenman, R.J. Procassini, C.J. Clouse, A Monte Carlo method for calculating initiation probability, in Proceedings of M &C + SNA 2007 (Monterey, CA, USA, 2007) [Google Scholar]
  16. M. McKinley, P. Brantley, Probability of initiation and extinction in the mercury Monte Carlo code, in Proceedings of M &C 2013 (Sun Valley, ID, USA, 2013) [Google Scholar]
  17. G.C. Pomraning, The Equations of Radiation Hydrodynamics (Dover Publications, Inc., Mineola, New York, 1973) [Google Scholar]
  18. A.B. Wollaber, J. Comput. Theor. Trans. 45, 1 (2016) [CrossRef] [Google Scholar]
  19. J.A. Fleck, E.H. Canfield, J. Comput. Phys. 54, 508(1984) [NASA ADS] [CrossRef] [Google Scholar]
  20. S.S. Vazhkudai, B.R. de Supinski, A.S. Bland, A. Geist, J. Sexton, J. Kahle, C.J. Zimmer, S. Atchley, S. Oral, D.E. Maxwell et al., The Design, Deployment, and Evaluation of the CORAL Pre-Exascale Systems (2018), SC ’18 [Google Scholar]
  21. M. Pozulp, R. Bleile, P. Brantley, S. Dawson, M. McKinley, M. O’Brien, A. Robinson, M. Yang, Progress porting LLNL Monte Carlo transport codes to Nvidia GPUs, in Proceedings of M &C 2023 (Niagara Falls, Canada, 2023) [Google Scholar]
  22. El capitan: Preparing for nnsa’s first exascale machine (2024), https://asc.llnl.gov/exascale/el-capitan [Google Scholar]
  23. P.S. Brantley, Trans. Am. Nucl. Soc. 111, 655 (2014) [Google Scholar]
  24. P.S. Brantley, P.F. O’Rourke, A.K. Prinja, Verification of a Monte Carlo levermore-pomraning algorithm for spatially-inhomogeneous binary stochastic media, in Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M &C 2019) (Portland, Oregon, USA, 2019) [Google Scholar]
  25. E.H. Vu, P.S. Brantley, A.J. Olson, B.C. Kiedrowski, Benchmark comparisons of Monte Carlo algorithms for one-dimensional n-ary stochastic media, in Proceedings of ANS M &C 2021 – The International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (Raleigh, North Carolina, USA, 2021) [Google Scholar]
  26. R.J. Howerton, R.E. Dye, S.T. Perkins, Evaluated nuclear data library (Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) 1981) [CrossRef] [Google Scholar]
  27. R.J. Howerton, Review of nuclear reaction data evaluation in the us (Lawrence Livermore National Lab., CA (USA) 1985) [Google Scholar]
  28. A. Trkov, D.A. Brown, Endf-6 formats manual: Data formats and procedures for the evaluated nuclear data files (Brookhaven National Lab. (BNL), Upton, NY (United States) 2018) [CrossRef] [Google Scholar]
  29. C. Mattoon, B. Beck, N. Patel, N. Summers, G. Hedstrom, D. Brown, Nucl. Data Sheets 113, 3145 (2012) [CrossRef] [Google Scholar]
  30. NEA, Specifications for the Generalised Nuclear Database Structure Version 2.0, OECD Publishing, Paris (2023) [Google Scholar]
  31. P.S. Brantley, C.A. Hagmann, J.A. Rathkopf, MCAPM-C generator and collision routine (Gen2000/Bang2000) documentation (revision 1.2) (2003) [Google Scholar]
  32. B. Beck, C.M. Mattoon, Gidiplus (2023), https://github.com/LLNL/gidiplus [Google Scholar]
  33. Geant4 (2023), https://github.com/Geant4/geant4 [Google Scholar]
  34. C.M. Mattoon, B.R. Beck, Wpec sg38: Designing a new format for storing nuclear data (Lawrence Livermore National Lab., CA (USA) 2014) [Google Scholar]
  35. M.S. McKinley, B.R. Beck, Implementation of the generalized interaction data interface (GIDI) in the mercury Monte Carlo code, in Proceedings of M &C + SNA + MC 2015 (Nashville, TN, USA, 2015) [Google Scholar]
  36. N.A. Gentile, N. Keen, J. Rathkopf, The kull imc package (Lawrence Livermore National Lab., CA (USA) 1998) [Google Scholar]
  37. R.J. Procassini, M.J. O’Brien, J.M. Taylor, Load balancing of parallel Monte Carlo transport applications, in Proceedings of Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications (Avignon, France, 2005) [Google Scholar]
  38. M.J. O’Brien, P.S. Brantley, K.I. Joy, Scalable load balancing for massively parallel distributed Monte Carlo particle transport, in Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M &C 2013) (Sun Valley, Idaho, 2013) [Google Scholar]
  39. M.J. O’Brien, Ph.D. Thesis, University of California, Davis, 2013 [Google Scholar]
  40. J.L. Kline, K. Widmann, A. Warrick, R.E. Olson, C.A. Thomas, A.S. Moore, L.J. Suter, O. Landen, D. Callahan, S. Azevedo et al., Rev. Sci. Instrum. 81, 10E321 (2010) [CrossRef] [Google Scholar]
  41. T.E. Grubbs, A.P. Robinson, P.S. Brantley, Trans. Am. Nucl. Soc. (to be published) [Google Scholar]
  42. R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev et al., Comput. Math. Appl. 81, 42 (2021) [CrossRef] [Google Scholar]
  43. V. Dobrev, T. Kolev, R. Rieben, SIAM J. Sci. Comput. 34, B606 (2012) [CrossRef] [Google Scholar]
  44. R. Anderson, A. Black, L. Busby, B. Blakeley, R. Bleile, J.S. Camier, J. Ciurej, A. Cook, V. Dobrev, N. Elliott et al., The Multiphysics on Advanced Platforms Project (2020) [CrossRef] [Google Scholar]
  45. N. Gentile, J. Comput. Phys. 172, 543 (2001) [CrossRef] [Google Scholar]
  46. J.D. Densmore, T.J. Urbatsch, T.M. Evans, M.W. Buksas, J. Comput. Phys. 222, 485 (2007) [CrossRef] [Google Scholar]
  47. R. Bleile, P. Brantley, M. O’Brien, H. Childs, Trans. American Nucl. Soc. 115, 535 (2016) [Google Scholar]
  48. D.F. Richards, R.C. Bleile, P.S. Brantley, S.A. Dawson, M.S. McKinley, M.J. O’Brien, Quicksilver: A Proxy app for the Monte Carlo transport code mercury, in 2017 IEEE International Conference on Cluster Computing (CLUSTER) (2017), pp. 866–873 [CrossRef] [Google Scholar]
  49. M. McKinley, R. Bleile, P. Brantley, S. Dawson, M. O’Brien, M. Pozulp, D. Richards, Status of LLNL Monte Carlo transport codes on sierra GPUs, in Proceedings of M &C 2019 (Portland, OR, USA, 2019), pp. 2160–2165 [Google Scholar]
  50. M. O’Brien, R. Bleile, P. Brantley, S. Dawson, S. McKinley, Hybrid CPU/GPU load balancing for Monte Carlo particle transport, in Proceedings of 26th International Conference on Transport Theory (ICTT-26) (Paris, France, 2019) [Google Scholar]
  51. R.C. Bleile, Ph.D. Thesis, University of Oregon, 2021 [Google Scholar]
  52. R. Bleile, P. Brantley, M. O’Brien, H. Childs, A dynamic replication approach for Monte Carlo photon transport on heterogeneous architectures, in Proceedings of the International Conference on Computational Science (Krakow, Poland, 2021) [Google Scholar]
  53. T. Aila, S. Laine, Understanding the efficiency of ray traversal on GPUs, in Proceedings of the Conference on High Performance Graphics 2009 (Association for Computing Machinery, New York, NY, USA, 2009), HPG ’09, p. 145–149 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.