Issue
EPJ Nuclear Sci. Technol.
Volume 10, 2024
Status and advances of Monte Carlo codes for particle transport simulation
Article Number 17
Number of page(s) 18
DOI https://doi.org/10.1051/epjn/2024018
Published online 22 November 2024
  1. E. Brun et al., TRIPOLI-4, CEA, EDF and AREVA Reference Monte Carlo Code, Ann. Nucl. Energy 82, 151 (2015) [CrossRef] [Google Scholar]
  2. J.P. Both, H. Derriennic, B. Morillon, J.C. Nimal, A survey of TRIPOLI-4, in Proc. 8th Intl. Conf. Rad. Shield., Arlington USA, (1994), p. 373 [Google Scholar]
  3. V. McLane, ENDF-102 Data Formats and Procedures for the Evaluation Nuclear Data File ENDF-6. Technical report BNL-NCS-44945-01/04-REV, Brookhaven National Laboratory, USA, 2004 [Google Scholar]
  4. J.C. Sublet, P. Ribon, M. Coste-Delclaux, CALENDF-2010: User manual, Technical report CEA-R-6277, CEA, France, 2011 [Google Scholar]
  5. A. Zoia, E. Brun, C. Jouanne, F. Malvagi, Doppler broadening of neutron elastic scattering kernel in TRIPOLI-4, Ann. Nucl. Energy 54, 218 (2013) [CrossRef] [Google Scholar]
  6. R. Brun, F. Rademakers, ROOT, an object-oriented data analysis framework, Nucl. Instrum. Methods A 389, 81 (1997) [CrossRef] [Google Scholar]
  7. J.P. Both, Y. Pénéliau, Parallelization of the Monte Carlo code TRIPOLI-4, in Proc. of M&C99, Madrid, Spain, (1999) [Google Scholar]
  8. Y.K. Lee, F.X. Hugot, TRIPOLI-4 Neutron Multiplication Calculations for the Subcritical Experiments of the BeRP Ball Reflected by Tungsten, in Proc. of ICNC 2023, The 12th Int. Conf. on Nuclear Criticality Safety, Sendai, Japan, (2023) [Google Scholar]
  9. E. Brun, A. Zoia, J.C. Trama, S. Lahaye, Y. Nagaya, Inter-code comparison of TRIPOLI and MVP on the MCNP criticality validation suite, in prof. of ICNC-2015, International Conference on Nuclear Criticality Safety, Charlotte, USA, (2015) [Google Scholar]
  10. S. Lahaye et al., New Bateman Equation Solvers in MENDEL version 3.1, in Proc. ICNC2023, Sendai, Japan, (2023) [Google Scholar]
  11. G. Dejonghe, J. Gonnord, J.C. Nimal, Perturbation calculations by the correlated samples method, in Proc. of the Intl. Meeting on Advances in Nuclear Engineering Computational Methods, Knoxville, USA, (1985) [Google Scholar]
  12. H. Rief, Generalized Monte Carlo perturbation algorithm for correlated sampling and a second-order Taylor series approach, Ann. Nucl. Energy 11, 455 (1984) [CrossRef] [Google Scholar]
  13. S. Bourganel, O. Petit, C.M. Diop, Three-dimensional particle transport using Green's functions in TRIPOLI-4 Monte Carlo code: application to PWR neutron fluence and ex-core response studies, Nucl. Technol. 184, 29 (2013) [CrossRef] [Google Scholar]
  14. J.P. Both, J.C. Nimal, T. Vergnaud, Automated importance generation and biasing techniques for Monte Carlo shielding techniques by the TRIPOLI-3 code, Prog. Nucl. Energy 24, 273 (1990) [CrossRef] [Google Scholar]
  15. O. Petit et al., Variance reduction adjustment in Monte Carlo TRIPOLI-4 neutron gamma coupled calculations, Prog. Nucl. Sci. Technol. 4, 408 (2014) [CrossRef] [Google Scholar]
  16. F.X. Hugot, Y.K. Lee, A new prototype display tool for the Monte Carlo particle transport code TRIPOLI-4, Prog. Nucl. Sci. Technol. 2, 851 (2011) [CrossRef] [Google Scholar]
  17. Y.K. Lee, F.X. Hugot, TRIPOLI-4 Monte Carlo Code Verification and Validation using T4G Tool, in Proc. of ICONE 31, 31st Int. Conf. on Nuclear Engineering, Prague, Czech Republic, (2024) [Google Scholar]
  18. E. Le Ménédeu, D. Mancusi, Valjean, a universal post-processing tool for neutronics, in Proc. of SNA+MC2024, Paris, France, (2024) [Google Scholar]
  19. D. Mancusi, Automatic Conversion of MCNP Geometries to TRIPOLI-4, in Proc. of Physor 2022, Pittsburgh, USA, (2022) [Google Scholar]
  20. Y.K. Lee, TRIPOLI-4 calculations of neutron multiplicity counting rates of He-3 array detectors and verification tests of an automatic MCNP-to-TRIPOLI conversion tool for recent ICSBEP subcritical experiments, in Proc. of SNA+MC2024, Paris, France, (2024) [Google Scholar]
  21. D. Mancusi et al., Overview of TRIPOLI-5, a Monte Carlo code for HPC, to be submitted to EPJ Nuclear Sci. Technol. (to be published) [Google Scholar]
  22. A. Jinaphanh, A. Zoia, Computing adjoint-weighted tallies with TRIPOLI-4 using the Wielandt method, in Proceedings of M&C2019, Portland, USA, (2019) [Google Scholar]
  23. F. Filiciotto, A. Jinaphanh, A. Zoia, Super-history methods for adjoint-weighted tallies in Monte Carlo time eigenvalue calculations, in Proceedings of Physor2020, Cambridge, UK, (2020) [Google Scholar]
  24. T. Yamamoto, Y. Miyoshi, Reliable method for fission source convergence of Monte Carlo criticality calculation with Wielandt's method, J. Nuclear Sci. Technol. 41, 99 (2004) [CrossRef] [Google Scholar]
  25. R.J. Brissenden, A.R. Garlick, Biases in the estimation of Keff and its error by Monte Carlo methods, Ann. Nucl. Energy 13, 63 (1986) [CrossRef] [Google Scholar]
  26. Y. Qiu et al., Computing eigenvalue sensitivity coefficients to nuclear data by adjoint superhistory method and adjoint Wielandt method implemented in RMC code, Ann. Nucl. Energy 87, 228 (2016) [CrossRef] [Google Scholar]
  27. N. Terranova, G. Truchet, I. Zmijarevic, A. Zoia, Adjoint neutron flux calculations with TRIPOLI-4: Verification and comparison to deterministic codes, Ann. Nucl. Energy 114, 136 (2018) [CrossRef] [Google Scholar]
  28. S. Carney, F. Brown, B. Kiedrowski, W. Martin, Theory and applications of the fission matrix method for continuous-energy Monte Carlo, Ann. Nucl. Energy 73, 423 (2014) [CrossRef] [Google Scholar]
  29. Y.K. Lee, A. Monnier, J.P. Both, J.C. Nimal, Benchmark Validation of the Criticality Code TRIMARAN2 (TRIPOLI-4 multi-group option), in Proc. of ICNC'95, The Fifth Int. Conf. on Nuclear Criticality Safety, Albuquerque, USA, (1995), p. 3.12 [Google Scholar]
  30. V. Vitali et al., Eigenvalue separation and eigenmode analysis by matrix-filling Monte Carlo methods, Ann. Nucl. Energy 164, 108563 (2021) [CrossRef] [Google Scholar]
  31. M. Mancusi, A. Zoia, Chaos in eigenvalue search methods, Ann. Nucl. Energy 112, 354 (2018) [CrossRef] [Google Scholar]
  32. Y. Nauchi, T. Kameyama, Development of calculation technique for iterated fission probability and reactor kinetic parameters using continuous-energy Monte Carlo method, J. Nuclear Sci. Technol. 47, 977 (2010) [CrossRef] [Google Scholar]
  33. B.C. Kiedrowski, F.B. Brown, P.P.H. Wilson, Adjoint-weighted tallies for k-eigenvalue calculations with continuous-energy Monte Carlo, Nucl. Sci. Eng. 168, 226 (2011) [CrossRef] [Google Scholar]
  34. G. Truchet, P. Leconte, A. Santamarina, E. Brun, F. Damian, A. Zoia, Computing adjoint-weighted kinetics parameters in TRIPOLI-4, Ann. Nucl. Energy 85, 17 (2015) [CrossRef] [Google Scholar]
  35. A. Zoia, E. Brun, Reactor physics analysis of the SPERT III E-core with TRIPOLI-4, Ann. Nucl. Energy 90, 71 (2016) [CrossRef] [Google Scholar]
  36. A. Zoia, Y. Nauchi, B. Brun, C. Jouanne, Monte Carlo analysis of the CROCUS benchmark on kinetics parameters calculation, Ann. Nucl. Energy 96, 377 (2016) [CrossRef] [Google Scholar]
  37. A. Zoia, C. Jouanne, P. Siréta, P. Leconte, G. Braoudakis, L. Wong, Analysis of dynamic reactivity by Monte Carlo methods: the impact of nuclear data, Ann. Nucl. Energy 110, 11 (2017) [CrossRef] [Google Scholar]
  38. N. Terranova, D. Mancusi, A. Zoia, New perturbation and sensitivity capabilities in TRIPOLI-4, Ann. Nucl. Energy 121, 335 (2018) [CrossRef] [Google Scholar]
  39. A. Jinaphanh, A. Zoia, Perturbation and sensitivity calculations for time eigenvalues using the generalized iterated fission probability, Ann. Nucl. Energy 133, 678 (2019) [CrossRef] [Google Scholar]
  40. A. Jinaphanh, C. Carabajal, A. Zoia, Implementation and Testing of the GPT Sensitivities. in TRIPOLI-4, in Proc. of Physor 2022, Pittsburgh, USA, (2022) [Google Scholar]
  41. A. Jinaphanh, P. Dufour, A. Zoia, Computing the sensitivity of effective kinetics parameters by Monte Carlo methods using a super-history approach, in Proceedings of M&C2023, Niagara Falls, Canada, (2023) [Google Scholar]
  42. A. Jinaphanh, G. Valocchi, A. Zoia, Implementation and testing of generalized perturbation Theory capabilities in TRIPOLI-4, Nucl. Sci. Eng., 1 (2024) [Google Scholar]
  43. B.C. Kiedrowski, F.B. Brown, Adjoint-based k-eigenvalue sensitivity coefficients to nuclear data using continuous-energy Monte Carlo. Nucl. Sci. Eng. 174, 227 (2013) [CrossRef] [Google Scholar]
  44. T.P. Burke, B.C. Kiedrowski, Monte Carlo perturbation theory estimates of sensitivities to system dimensions, Nucl. Sci. Eng. 189, 199 (2018) [CrossRef] [Google Scholar]
  45. G. Shi et al., Improved generalized perturbation theory method for sensitivity analysis of generalized response function, Prog. Nucl. Energy 134, 103643. (2021) [CrossRef] [Google Scholar]
  46. M. Faucher, D. Mancusi, A. Zoia, New kinetic simulation capabilities for TRIPOLI-4: methods and applications, Ann. Nucl. Energy 120, 74 (2018) [CrossRef] [Google Scholar]
  47. E. Dumonteil et al., Particle clustering in Monte Carlo criticality simulations, Ann. Nucl. Energy 63, 612 (2014) [CrossRef] [Google Scholar]
  48. B. Houchmandzadeh, E. Dumonteil, A. Mazzolo, A. Zoia, Neutron fluctuations: The importance of being delayed, Phys. Rev. E 92, 052114 (2015) [CrossRef] [Google Scholar]
  49. T. Bonnet, D. Mancusi, A. Zoia, Space and time correlations for diffusion models with prompt and delayed birth-and-death event, Phys. Rev. E 105, 064105 (2022) [CrossRef] [Google Scholar]
  50. M. Faucher, D. Mancusi, A. Zoia, Variance-reduction methods for Monte Carlo kinetic simulation, in Proc. M&C 2019, Portland, USA, (2019) [Google Scholar]
  51. B.L. Sjenitzer, J.E. Hoogenboom, Dynamic Monte Carlo method for nuclear reactor kinetics calculations, Nucl. Sci. Eng. 175, 94 (2013) [CrossRef] [Google Scholar]
  52. T. Bonnet, H. Belanger, D. Mancusi, A. Zoia, The effect of branchless collisions and population control on correlations in Monte Carlo power iteration, Nucl. Sci. Eng. 1 (2024) [Google Scholar]
  53. T. Booth, A weight (charge) conserving importance-weighted comb for Monte Carlo, in Proc. RPSD Topical Meeting, Falmouth, USA, (1996) [Google Scholar]
  54. D. Mancusi, A. Zoia, Zero-variance schemes for kinetic Monte Carlo simulations, Eur. Phys. J. Plus 135, 401 (2020) [CrossRef] [Google Scholar]
  55. O. Petit, C. Jouanne, Stochastic temperature interpolation in the Monte Carlo code TRIPOLI-4, in Proc. of SNA+MC 2020, Chiba, Japan, (2020) [Google Scholar]
  56. R. MacFarlane, D. Muir, The NJOY Nuclear Data Processing System, version 91, Technical report LA12740-M, Los Alamos National Laboratory, USA, 1994 [Google Scholar]
  57. M. Faucher et al., Multi-physics simulations with TRIPOLI-4: coupling neutron transport with the CFD code TRUST/TrioCFD, in Proc. ICAPP2019, Juan-les-pins, France, (2019) [Google Scholar]
  58. D. Ferraro et al., Serpent and TRIPOLI-4 transient calculations comparisons for diverse reactivity insertion scenarios in a 3D PWR minicore benchmark, in Proc. M&C2019, Portland, USA, (2019) [Google Scholar]
  59. M. Faucher, D. Mancusi, A. Zoia, Multi-Physics Transient Simulations With TRIPOLI-4, EPJ Web Conf. 247, 07019 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  60. D. Mancusi, M. Faucher, A. Zoia, Monte Carlo simulations of the SPERT III E-core transient experiments, Eur. Phys. J. Plus. 137, 127 (2022) [CrossRef] [Google Scholar]
  61. U. Imke, V.H. Sanchez, Validation of the Subchannel Code SUBCHANFLOW Using the NUPEC PWR Tests (PSBT), Sci. Technol. Nucl. Install. 2012, 465059 (2012) [CrossRef] [Google Scholar]
  62. J.C. Wagner, A. Haghighat, Automated variance reduction of Monte Carlo shielding calculations using the discrete ordinates adjoint function, Nucl. Sci. Eng. 128, 186 (1998) [CrossRef] [Google Scholar]
  63. A. Haghighat, J.C. Wagner, Monte Carlo variance reduction with deterministic importance functions, Prog. Nucl. Energy 42, 25 (2003) [CrossRef] [Google Scholar]
  64. M. Munk, R.N. Slaybaugh, Review of hybrid methods for deep-penetration neutron transport, Nucl. Sci. Eng. 193, 1055 (2019) [CrossRef] [Google Scholar]
  65. M. Nowak et al., Accelerating Monte Carlo shielding calculations in TRIPOLI-4 with a deterministic adjoint flux, Nucl. Sci. Eng. 193, 966 (2019) [CrossRef] [Google Scholar]
  66. D. Mancusi et al., Evaluating importance maps for TRIPOLI-4 using deterministic or on-line methods, in Proc. RPSD2018, Santa Fe, USA, (2018) [Google Scholar]
  67. I. Zmijarevic, R. Sanchez, Deterministic solutions for 3D Kobayashi benchmarks, Prog. Nucl. Energy 39, 207 (2001) [CrossRef] [Google Scholar]
  68. M. Falabino et al., Comparison of variance reduction methods in shielding problems with source multiplication, Eur. Phys. J. Plus 136, 598 (2021) [CrossRef] [Google Scholar]
  69. A. Bonin, O. Petit, Efficiency of variance-reduction techniques using TRIPOLI-4: application to equivalent dose rate calculations in a spent fuel cask, in Proc. of SNA+MC2024, Paris, France, (2024) [Google Scholar]
  70. T.E. Booth, Genesis of the Weight Window and Weight Window Generator in MCNP - A Personal History, Technical Report LA-UR-06-5807, Los Alamos National Laboratory, 2006 [Google Scholar]
  71. J. Sweezy, F.B. Brown, T. Booth, J. Chiaramonte, B. Preeg, Automated variance reduction for MCNP using deterministic methods, Radiat. Prot. Dosimetry 116, 508 (2005) [CrossRef] [Google Scholar]
  72. S. Mosher et al., ADVANTG - An Automated Variance Reduction Parameter Generator, Technical report ORNL/TM-2013/416 Rev. 1, Oak Ridge National Laboratory, USA, 2015 [Google Scholar]
  73. F. Cérou, A. Guyader, Adaptive multilevel splitting for rare event analysis, Stoch. Anal. Appl. 25, 417 (2007) [CrossRef] [MathSciNet] [Google Scholar]
  74. C.E. Bréhier et al., Unbiasedness of some generalized adaptive multilevel splitting algorithms, Ann. Appl. Prob. 26, 3559 (2016) [Google Scholar]
  75. H. Louvin et al., Adaptive multilevel splitting for Monte Carlo particle transport, EPJ Web Conf. 153, 06006 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  76. H. Louvin et al., Adaptive multilevel splitting for Monte Carlo particle transport, EPJ Nuclear Sci. Technol. 3, 29 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  77. H. Louvin, E. Dumonteil, T. Lelièvre, Three-dimensional neutron streaming calculations using adaptive multilevel splitting, in Proc. M&C2017, Jeju, Korea, (2017) [Google Scholar]
  78. H. Louvin, O. Petit, Application of adaptive multilevel splitting on coupled neutron-photon TRIPOLI-4 Monte Carlo simulations, in Proc. RPSD2018, Santa Fe, USA, (2018) [Google Scholar]
  79. Y.K. Lee, 14 MeV neutron streaming calculations for JET-like maze entrance using TRIPOLI-4 Monte Carlo code, Fusion Eng. Design 146, 2163 (2019) [CrossRef] [Google Scholar]
  80. J.C. Jaboulay et al., Rigorous-two-Steps scheme of TRIPOLI-4 Monte Carlo code validation for shutdown dose rate calculation, EPJ Web Conf. 153, 02008 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  81. J.A. Kulesza et al., MCNP Code Version 6.3.0 Theory & User Manual, Technical Report LA-UR-22-30006, Los Alamos National Laboratory, USA, 2022 [Google Scholar]
  82. P. Ridoux et al., Improvement of gamma-ray Sn transport calculations including coherent and incoherent scatterings and secondary sources of bremsstrahlung and fluorescence: Determination of gamma-ray buildup factors, Nucl. Sci. Eng. 123, 215 (1996) [CrossRef] [Google Scholar]
  83. D. Riz, Calculation and use of multigroup cross sections including electron-photon cascade for a 3D Monte Carlo neutron-gamma transport code. Comparisons with MCNP-4B, in Proc. Physor2000, Pittsburgh, USA, (2000) [Google Scholar]
  84. D. Mancusi, A. Bonin, F.X. Hugot, F. Malouch, Advances in Monte-Carlo code TRIPOLI-4's treatment of the electromagnetic cascade, EPJ Web Conf. 170, 01008 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  85. D. Mancusi, A. Bonin, F.X. Hugot, F. Malouch, Advances in the treatment of the electromagnetic cascade in the TRIPOLI-4 Monte Carlo Code, IEEE Trans. Nucl. Sci. 65, 2372 (2018) [CrossRef] [Google Scholar]
  86. M.J. Berger, S.M. Seltzer, Bremsstrahlung and photoneutrons from thick tungsten and tantalum targets, Phys. Rev. C 2, 621 (1970) [CrossRef] [Google Scholar]
  87. S.M. Seltzer, M.J. Berger, Bremsstrahlung energy spectra from electrons with kinetic energy 1 keV-10 GeV incident on screened nuclei and orbital electrons of neutral atoms with Z = 1-100, Atom. Data Nucl. Data 35, 345 (1986) [CrossRef] [Google Scholar]
  88. S. Goudsmit, J.L. Saunderson, Multiple scattering of electrons, Phys. Rev. 57, 24 (1940) [CrossRef] [Google Scholar]
  89. S.T. Perkins, D.E. Cullen, S.M. Seltzer, Tables and graphs of electron-interaction cross sections from 10 eV to 100 GeV derived from the LLNL Evaluated Electron Data Library (EEDL), Z = 1-100, Tech. Rep. UCRL50400, Lawrence Livermore National Laboratory, 1991 [Google Scholar]
  90. N.F. Mott, The scattering of fast electrons by atomic nuclei, Proc. Roy. Soc. Ac. 124, 425 (1929) [Google Scholar]
  91. G. Molière, Theorie der Streuung schneller geladener Teilchen i: Einzelstreuung am abgeschirmten CoulombFeld, Z. Naturforsch. 2, 133 (1947) [CrossRef] [Google Scholar]
  92. G. Molière, Theorie der Streuung schneller geladener Teilchen ii: Mehrfach- und Vielfachstreuung, Z. Naturforsch. 3, 78 (1948) [CrossRef] [Google Scholar]
  93. H. Feshbach, The Coulomb scattering of relativistic electrons and positrons by nuclei, Phys. Rev. 88, 295(1952) [Google Scholar]
  94. N. Sherman, Coulomb scattering of relativistic electrons by point nuclei, Phys. Rev. 103, 1601 (1956) [CrossRef] [Google Scholar]
  95. D.A. Brown et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nucl. Data Sheets 148, 1 (2018) [CrossRef] [Google Scholar]
  96. O. Iwamoto et al., Japanese evaluated nuclear data library version 5: JENDL-5, J. Nucl. Sci. Technol. 60, 1 (2023) [CrossRef] [Google Scholar]
  97. T.K. Tuyet, A. Jinaphanh, C. Jouanne, F. Gérardin, S. Lemaire, A. Zoia, Comparison of the TRIPOLI-4, DIANE, and MCNP6 Monte Carlo Codes on the Barber & George Benchmark for Photonuclear Reactions, Nucl. Sci. Eng. 198, 319 (2024) [CrossRef] [Google Scholar]
  98. M. Caillaud, S. Lemaire, S. Ménard, P. Rathouit, J.C. Ribes, S. Riz, DIANE multiparticle transport code, in Proc. SNA+MC2013, Paris, France, (2014) [Google Scholar]
  99. J. Allison et al., Recent developments in Geant4, Nucl. Instrum. Meth. Phys. Res. A 835, 186 (2016) [CrossRef] [Google Scholar]
  100. D. Mancusi, O. Bringer, P. Monot, Progress on the TRIPOLI-4-Geant4 coupling, EPJ Web Conf. 153, 06002 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  101. J.M. Verbeke, O. Petit, O. Litaize, A. Chebboubi, Correlated production and analog transport of fission neutrons and photons using fission models FREYA, FIFRELIN and the Monte Carlo code TRIPOLI-4, IEEE Trans. Nucl. Sci. 65, 2471 (2018) [CrossRef] [Google Scholar]
  102. O. Petit, C. Jouanne, O. Litaize, O. Serot, A., Pénéliau, FIFRELIN-TRIPOLI-4 coupling for Monte Carlo simulations with a fission model. Application to shielding calculations, EPJ Web Conf. 153, 06003 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
  103. J.M. Verbeke, O. Petit, Stochastic analog neutron transport with TRIPOLI-4 and FREYA: Bayesian uncertainty quantification for neutron multiplicity counting, Nucl. Sci. Eng. 183, 214 (2016) [CrossRef] [Google Scholar]
  104. O. Petit, E. Dumonteil, Analog neutron transport for nuclear instrumentation applications with the Monte Carlo code TRIPOLI-4, Nucl. Technol. 192, 259 (2015) [CrossRef] [Google Scholar]
  105. J.M. Verbeke, J. Randrup, R. Vogt, Fission Reaction Event Yield Algorithm, FREYA - For event-by-event simulation of fission, Comput. Phys. Commun. 191, 178 (2015) [CrossRef] [Google Scholar]
  106. O. Litaize, O. Serot, Investigation of phenomenological models for the Monte Carlo simulation of the prompt fission neutron and γ emission, Phys. Rev. C, Nucl. Phys. 82, 054616 (2010) [CrossRef] [Google Scholar]
  107. C. Larmier, M.A. Kowalski, A. Zoia, CASTOR, a random media sampler for particle transport applications, in Proc. M&C23, Niagara Falls, Canada, (2023) [Google Scholar]
  108. C. Larmier, E. Dumonteil, F. Malvagi, A. Mazzolo, A. Zoia, Finite-size effects and percolation properties of Poisson geometries, Phys. Rev. E 94, 012130(2017) [Google Scholar]
  109. C. Larmier, A. Zoia, F. Malvagi, E. Dumonteil, A. Mazzolo, Monte Carlo particle transport in random media: The effects of mixing statistics, J. Quant. Spectr. Radiat. Transfer 196, 270 (2017) [CrossRef] [Google Scholar]
  110. G.C. Pomraning, Linear Kinetic Theory and Particle Transport in Stochastic Mixtures (World Scientific Publishing, River Edge, USA, 1991) [CrossRef] [Google Scholar]
  111. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer-Verlag, New York, USA, 2013) [Google Scholar]
  112. C. Larmier, A. Zoia, F. Malvagi, E. Dumonteil, A. Mazzolo, Neutron multiplication in random media: Reactivity and kinetics parameters, Ann. Nucl. Energy 111, 391 (2018) [CrossRef] [Google Scholar]
  113. C. Larmier, F.X. Hugot, F. Malvagi, A. Mazzolo, A. Zoia, Benchmark solutions for transport in d-dimensional Markov binary mixtures, J. Quant. Spectr. Radiat. Transfer 189, 133 (2017) [CrossRef] [Google Scholar]
  114. A. Marinosci, C. Larmier, A. Zoia, Neutron transport in anisotropic random media, Ann. Nucl. Energy 118, 406 (2018) [CrossRef] [Google Scholar]
  115. H. Belanger, C. Larmier, D. Mancusi, A. Zoia, Optimization of Particle Tracking Methods for Stochastic Media, in Proc. of Physor2022, Pittsburgh, USA, 2022 [Google Scholar]
  116. C. Larmier, A. Lam, P. Brantley, F. Malvagi, T. Palmer, A. Zoia, Monte Carlo chord length sampling for d-dimensional Markov binary mixtures, J. Quant. Spectr. Radiat. Transfer 204, 256 (2018) [CrossRef] [Google Scholar]
  117. C. Larmier, A. Zoia, F. Malvagi, E. Dumonteil, A. Mazzolo, Poisson-Box Sampling algorithms for three-dimensional Markov binary mixtures, J. Quant. Spectr. Radiat. Transfer 206, 70 (2018) [CrossRef] [Google Scholar]
  118. Y.K. Lee, Organ dose calculations using ICRP adult voxel phantoms and TRIPOLI-4 Monte Carlo code, ASME J. Nucl. Rad. Sci. 6, 041105 (2020) [CrossRef] [Google Scholar]
  119. Y.K. Lee, F.X. Hugot, Y. Jin, New route in TRIPOLI-4 for radiation dosimetry calculations using ICRP 110 voxel phantoms, in Proc. of M&C 2021, Raleigh, USA, (2021) [Google Scholar]
  120. Y.K. Lee, F.X. Hugot, Current status of TRIPOLI-4 Monte Carlo radiation transport code on adult and pediatric computational phantoms for radiation dosimetry study, Nucl. Sci. Eng. 198, 274 (2024) [CrossRef] [Google Scholar]
  121. L. Struelens et al., Joint EURADOS-EANM initiative for an advanced computational framework for the assessment of external dose rates from nuclear medicine patients, EJNMMI Phys. 11, 38 (2024) [CrossRef] [Google Scholar]
  122. J. Wagner, D.E. Peplow, S.W. Mosher, FW-CADIS method for global and regional variance reduction of Monte Carlo radiation transport calculations, Nucl. Sci. Eng. 176, 37 (2014) [CrossRef] [Google Scholar]
  123. M.A. Kowalski, L. Larmier, F. Madiot, J. Durand, S. Lemaire, A. Zoia, Particle transport in Markov media with spatial gradients: Comparison between reference solutions and Chord Length Sampling, J. Quant. Spectr. Radiat. Transfer 286, 108185 (2022) [CrossRef] [Google Scholar]
  124. A. Jinaphanh, A. Zoia, A variance-reduction strategy for the sensitivity of ²eff, in Proc. of SNA+MC2024, Paris, France, (2024) [Google Scholar]
  125. C. Montecchio, D. Mancusi, A. Zoia, Towards a highly efficient and unbiased population-control algorithm for kinetic Monte Carlo simulations, in Proc. of SNA+MC2024, Paris, France, (2024) [Google Scholar]
  126. P. Vinai et al., On the simulation of neutron noise induced by vibrations of fuel pins in a fuel assembly, Ann. Nucl. Energy 181, 109521 (2023) [CrossRef] [Google Scholar]
  127. M. Hursin et al., Modeling noise experiments performed at AKR-2 and CROCUS zero-power reactors, Ann. Nucl. Energy 194, 110066 (2023) [CrossRef] [Google Scholar]
  128. H. Belanger, D. Mancusi, A. Rouchon, A. Zoia, Variance reduction and noise source sampling techniques for Monte Carlo simulations of neutron noise induced by mechanical vibrations, Nucl. Sci. Eng. 197, 534 (2023) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.