Issue |
EPJ Nuclear Sci. Technol.
Volume 10, 2024
Status and advances of Monte Carlo codes for particle transport simulation
|
|
---|---|---|
Article Number | 16 | |
Number of page(s) | 63 | |
DOI | https://doi.org/10.1051/epjn/2024015 | |
Published online | 02 December 2024 |
- A. Ferrari, P.R. Sala, A. Fassò, J. Ranft, FLUKA: A multi-particle transport code (Program version 2005), CERN INFN SLAC, Tech. Rep. CERN-2005-010, SLAC-R-773, INFN-TC-05-11, CERN-2005-10, 10 2005 [Google Scholar]
- A. Fassò, A. Ferrari, J. Ranft, P. R. Sala, FLUKA: performances and applications in the intermediate energy range, in OECD / NEA Specialists’ Meeting on Shielding Aspects of Accelerator, Targets and Irradiation Facilities (1995), pp. 287–304 [Google Scholar]
- A. Fassò, A. Ferrari, J. Ranft, P. Sala, An update about FLUKA, in Proceedings of The Second Workshop on Simulating Accelerator Radiation Environments (SARE 2), CERN, Geneva, Switzerland, 1995, edited by G.R. Stevenson (1997), p. 158 [Google Scholar]
- A. Fassò, A. Ferrari, P.R. Sala, J. Ranft, New developments in FLUKA modeling hadronic and EM interactions, in 3rd Workshop on Simulating Accelerator Radiation Environments (SARE3) (1997), pp. 32–43. [Google Scholar]
- A. Fassò, A. Ferrari, P.R. Sala, J. Ranft, FLUKA: Status and prospects for hadronic applications, in International Conference on Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications (MC 2000) (2000), pp. 955–960 [Google Scholar]
- T. Böhlen, F. Cerutti, M. Chin, A. Fassò et al., The FLUKA code: Developments and challenges for high energy and medical applications, Nucl. Data Sheets 120, 211 (2014) [CrossRef] [Google Scholar]
- A. Ferrari, P.R. Sala, A new model for hadronic interactions at intermediate-energies for the FLUKA code, in Proc. of the MC93 Int. Conf. on Monte Carlo Simulation in High-Energy and Nuclear Physics (1993) [Google Scholar]
- A. Ferrari, P.R. Sala, The physics of high energy reactions, in Proceedings of Workshop on Nuclear Reaction Data and Nuclear Reactors Physics, Design and Safety, World Scientific, p. 424, Miramare-Trieste, Italy, 15 April-17 May 1996, edited by A. Gandini, G. Reffo (1998) [Google Scholar]
- A. Ferrari, P.R. Sala, Nuclear reactions in Monte Carlo codes, Rad. Prot. Dosim. 99, 29 (2002) [CrossRef] [Google Scholar]
- A. Capella, U. Sukhatme, C.-I. Tan, J. Tran Thanh Van, Dual parton model, Phys. Rept. 236, 225 (1994) [CrossRef] [Google Scholar]
- T. Abbott, Y. Akiba, D. Beavis, M.A. Bloomer et al., Measurement of particle production in proton-induced reactions at 14.6 GeV/c, Phys. Rev. D 45, 3906 (1992) [CrossRef] [PubMed] [Google Scholar]
- NA61/SHINE Collaboration, N. Abgrall, A. Aduszkiewicz, Y. Ali et al., Measurements of pi±, k±, ks0, λ and proton production in proton–carbon interactions at 31 GeV/c with the NA61/SHINE spectrometer at the CERN SPS, Eur. Phys. J. C 76, 84, (2016) [CrossRef] [Google Scholar]
- A. Fassò, A. Ferrari, J. Ranft, P. Sala, G. Stevenson, J. Zazula, FLUKA92, in Proceedings of the Workshop on Simulating Accelerator Radiation Environments (SARE-1), 11-15 January 1993, Santa Fe (N. Mex.) (1993) [Google Scholar]
- A. Ferrari, P.R Sala, A. Fassò, G.R. Stevenson, Can we predict radiation levels in calorimeters? in 2nd International Conference on Calorimetry in High-energy Physics (1991), p. 101 [Google Scholar]
- A. Ferrari, P.R Sala, A new model for hadronic interactions at intermediate-energies for the FLUKA code, in International Conference on Monte Carlo Simulation in High-Energy and Nuclear Physics - MC 93 (1993) [Google Scholar]
- G. Battistoni, F. Cerutti, R. Engel, A. Fassò et al., Recent developments in the FLUKA nuclear reaction models, in Proceed. 11th Int. Conf. on Nucl. React. Mech., Varenna, Italy, 12-16th June, edited by E. Gadioli, (2006) pp. 483–495 [Google Scholar]
- L. Waters et al., The current status of LAHET/MCNP, in Proceedings of The Second Workshop on Simulating Accelerator Radiation Environments (SARE 2), CERN, Geneva, Switzerland, 1995, edited by G. R. Stevenson (1997), p. 132 [Google Scholar]
- A. Fassò, A. Ferrari, P.R. Sala, Designing electron accelerator shielding with FLUKA, in Radiation shielding, International Conference on Radiation Shielding (American Nuclear Society, La Grange Park, 1994), Vol. 2. pp. 643–64 [Google Scholar]
- A. Capella, J. Tran Thanh Van, A new parton model description of soft hadron-nucleus collisions, Phys. Lett. B 93, 146 (1980) [CrossRef] [Google Scholar]
- V.N. Gribov, Glauber corrections and the interaction between high-energy hadrons and nuclei, Sov. Phys. JETP 29, 483 (1969) [Google Scholar]
- A. Capella, A. Krzywicki, A theoretical model of soft hadron-nucleus collisions at high-energies, Phys. Rev. D 18, 3357 (1978) [CrossRef] [Google Scholar]
- K. Zalewski, Hadron nucleus collisions at very high-energies, Ann. Rev. Nucl. Part. Sci. 35, 55, (1985) [CrossRef] [Google Scholar]
- A. Capella, A dependence in hadron nucleus collisions, Nucl. Phys. A 525, 133C (1991) [CrossRef] [Google Scholar]
- J.J. Griffin, Statistical model of intermediate structure, Phys. Rev. Lett. 17, 478 (1966) [CrossRef] [Google Scholar]
- E. Gadioli, P. Hodgson, Pre-equilibrium Nuclear Reactions (Clarendon Press, 1992) [Google Scholar]
- A. Ferrari, P.R. Sala, Physics of showers induced by accelerator beams, in Lecture given at the 1995 “Frederic Joliot” Summer School in Reactor Physics, Cadarache, France (1995) [Google Scholar]
- W. Scobel, M. Trabandt, M. Blann, B.A. Pohl et al., Preequilibrium (p,n) reaction as a probe for the effective nucleon-nucleon interaction in multistep direct processes, Phys. Rev. C 41, 2010 (1990) [CrossRef] [Google Scholar]
- W.A. Richter, A.A Cowley, G.C Hillhouse, J.A. Stander et al., Preequilibrium (p,p’) measurements and calculations for 90Zr and neighboring nuclei for incident energies up to 200 MeV, Phys. Rev. C 49, 1001 (1994) [CrossRef] [Google Scholar]
- T. Kozlowski, W. Bertl, H. Povel, U. Sennhauser et al., Energy spectra and asymmetries of neutrons emitted after muon capture, Nucl. Phys. A 436, 717 (1985) [CrossRef] [Google Scholar]
- M.H. Krieger, Columbia University, Tech. Rep. NEVIS-172, 1969 [Google Scholar]
- R.M. Sundelin, R.M. Edelstein, A. Suzuki, K. Takahashi, Asymmetry of neutrons from muon capture in silicon, sulfur, and calcium, Phys. Rev. Lett. 20, 1201 (1968) [CrossRef] [Google Scholar]
- J. Van Der Pluym, T. Kozlowski, W. Hesselink, A. Van Der Schaaf et al., High-energy neutrons emitted after muon capture in 40Ca, Phys. Lett. B 177, 21 (1986) [CrossRef] [Google Scholar]
- G. Bendiscioli, D. Kharzeev, Antinucleon-nucleon and antinucleon-nucleus interaction. A review of experimental data, Rivista del Nuovo Cimento 17, 6 (1994) [CrossRef] [Google Scholar]
- T. Enqvist, W. Wlazło, P. Armbruster, J. Benlliure et al., Isotopic yields and kinetic energies of primary residues in 1 A GeV 208Pb+p reactions, Nucl. Phys. A 686, 481 (2001) [CrossRef] [Google Scholar]
- M. Bernas, P. Armbruster, J. Benlliure, A. Boudard et al., Fission-residues produced in the spallation reaction 238U+p at 1AGeV, Nucl. Phys. A 725, 213 (2003) [CrossRef] [Google Scholar]
- J. Taïeb, K.-H. Schmidt, L. Tassan-Got, P. Armbruster et al., Evaporation residues produced in the spallation reaction 238U+p at 1AGeV, Nucl. Phys. A 724, 413 (2003) [CrossRef] [Google Scholar]
- R.L. >Workman and Others, Rev. Part. Phys. 2022, 083C01 (2022) [Google Scholar]
- IceCube Collaboration, M.G. Aartsen, and Others, Measurement of the multi-TeV neutrino interaction cross-section with IceCube using Earth absorption, Nature 551, 596 (2017) [CrossRef] [PubMed] [Google Scholar]
- IceCube Collaboration, R. Abbasi, M. Ackermann, and Others, Measurement of the high-energy all-flavor neutrino-nucleon cross section with IceCube, Phys. Rev. D 104, 022001 (2021) [CrossRef] [Google Scholar]
- EHS-NA22 Collaboration, I.V. Ajinenko, Y.A. Belokopytoy, H. Bialkowska et al., Multiplicity distribution in K + Al and K + Au collisions at 250GeV/c and a test of the multiple collision model, Z. Phys. C Part. Fields 42, 377 (1989) [CrossRef] [Google Scholar]
- R.J. Glauber, Cross-sections in deuterium at high-energies, Phys. Rev. 100, 242 (1955) [CrossRef] [Google Scholar]
- R. Glauber, Lectures in Theoretical Physics (Interscience, New York London, 1959), Vol. 1 [Google Scholar]
- N. Metropolis, R. Bivins, M. Storm, A. Turkevich, J.M Miller, G. Friedlander, Monte Carlo calculations on Intranuclear cascades. I. low-energy studies, Phys. Rev. 110, 185 (1958) [CrossRef] [Google Scholar]
- H.W. Bertini, Low-energy intranuclear cascade calculation, Phys. Rev. 131, 1801 (1963) [NASA ADS] [CrossRef] [Google Scholar]
- E. Oset, L.L Salcedo, Delta self-energy in nuclear matter, Nucl. Phys. A 468, 631 (1987) [CrossRef] [Google Scholar]
- M.V. Vacas, E. Oset, Pion absorption in medium and heavy nuclei, Nucl. Phys. A 568, 855 (1994) [CrossRef] [Google Scholar]
- L. Salcedo, E. Oset, M. Vicente-Vacas, C. Garcia-Recio, Computer simulation of inclusive pion nuclear reactions, Nucl. Phys. A 484, 557 (1988) [CrossRef] [Google Scholar]
- W. Huang, M. Wang, F. Kondev, G. Audi, S. Naimi, The AME 2020 atomic mass evaluation (i). evaluation of input data, and adjustment procedures*, Chin. Phys. C 45, 030002 (2021) [NASA ADS] [CrossRef] [Google Scholar]
- M.E. Grypeos, G.A Lalazissis, S.E Massen, C.P Panos, The ’cosh’ or symmetrized Woods-Saxon nuclear potential, J. Phys. G: Nucl. Part. Phys. 17, 1093 (1991) [CrossRef] [Google Scholar]
- L. Elton, Nuclear Sizes (Oxford University Press, 1961) [Google Scholar]
- Z. Pengfei, C. Weiqin, Formation time and intranuclear cascading in high-energy ha collisions, Nucl. Phys. A 552, 620 (1993) [CrossRef] [Google Scholar]
- J. Ranft, Hadron production in hadron-nucleus and nucleus-nucleus collisions in a dual parton model modified by a formation zone intranuclear cascade, Z. Phys. C – Part. Fields 43, 439 (1989) [CrossRef] [Google Scholar]
- L.D. Landau, I.Y Pomeranchuk, The limits of applicability of the theory of bremsstrahlung by electrons and of the creation of pairs at large energies, Proc. USSR Acad. Sci. 92, 172 (1953) [Google Scholar]
- A.B. Migdal, Bremsstrahlung and pair production in condensed media at high-energies, Phys. Rev. 103, 1811 (1956) [CrossRef] [Google Scholar]
- H.J. Möhring, J. Ranft, Dual parton model with complete formation zone intranuclear cascade for the description of particle production in hadron-nucleus and nucleus-nucleus interactions, Z. Phys. C Part. Fields 52, 643 (1991) [CrossRef] [Google Scholar]
- G. Battistoni, T. Boehlen, F. Cerutti, P. W. Chin et al., Overview of the FLUKA code, Ann. Nucl. Energy 82, 10 (2015) [CrossRef] [Google Scholar]
- F. Ballarini, G. Battistoni, F. Cerutti, A. Empl et al., Nuclear models in FLUKA: Present capabilities, open problems, and future improvements, AIP Conf. Proc. 769, 1197(2005) [CrossRef] [Google Scholar]
- G. Giacomelli et al., Nucl. Phys. B 71, 138 (1974) [CrossRef] [Google Scholar]
- A. Martin, Kaon-nucleon parameters, Nucl. Phys. B 179, 33 (1981) [CrossRef] [Google Scholar]
- G. Gopal et al., Partial-wave analyses of KN two-body reactions between 1480 and 2170 MeV, Nucl. Phys. B 119, 362 (1977) [CrossRef] [Google Scholar]
- B. Goulard, H. Primakoff, Nuclear muon-capture sum rules and mean nuclear excitation energies, Phys. Rev. C 10, 2034 (1974) [CrossRef] [Google Scholar]
- T. Suzuki et al., Total neutron capture rates for negative muons, Phys. Rev. C 35, 2212 (1987) [CrossRef] [Google Scholar]
- M. Lifshitz, P. Singer, High-multiplicity neutron emission from muon capture, Phys. Lett. B 215, 607 (1988) [CrossRef] [Google Scholar]
- L.I. Ponomarev, Molecular structure effects on atomic and nuclear capture of mesons, Ann. Rev. Nucl. Sci. 23, 395 (1973) [CrossRef] [Google Scholar]
- H. Daniel, Formation of mesonic atoms in condensed matter, Phys. Rev. Lett. 35, 1649 (1975) [CrossRef] [Google Scholar]
- S. Aghion, C. Amsler, A. Ariga, T. Ariga et al., Measurement of antiproton annihilation on cu, ag and au with emulsion films, J. Instrum. 12, P04021 (2017) [CrossRef] [Google Scholar]
- H. Feshbach, A. Kerman, S. Koonin, The statistical theory of multi-step compound and direct reactions, Ann. Phys. 125, 429 (1980) [CrossRef] [Google Scholar]
- M. Blann, Preequilibrium decay, Ann. Rev. Nucl. Part. Sci. 25, 123 (1975) [CrossRef] [Google Scholar]
- M. Blann, Hybrid Model for Pre-Equilibrium Decay in Nuclear Reactions, Phys. Rev. Lett. 27, 337 (1971) [CrossRef] [Google Scholar]
- M. Blann, Importance of the nuclear density distribution on pre-equilibrium decay, Phys. Rev. Lett. 28, 757 (1972) [CrossRef] [Google Scholar]
- M. Blann, H.K Vonach, Global test of modified precompound decay models, Phys. Rev. C 28, 1475 (1983) [CrossRef] [Google Scholar]
- M. Blann, Precompound analyses of spectra and yields following nuclear capture of stopped π−, Phys. Rev. C 28, 1648 (1983) [CrossRef] [Google Scholar]
- K. Kikuchi, M. Kawai, North-Holland research monograph in the field of nuclear physics, in Nuclear Matter and Nuclear Reactions Ser. A (North-Holland Publishing Company, 1968) [Google Scholar]
- G. Mantzouranis, D. Agassi, H. Weidenmüller, Angular distribution of nucleons in nucleon-induced preequilibrium reactions, Phys. Lett. B 57, 220 (1975) [CrossRef] [Google Scholar]
- J. Akkermans, H. Gruppelaar, and G. Reffo, Angular distributions in a unified model of preequilibrium and equilibrium neutron emission, Phys. Rev. C 22, 73 (1980) [CrossRef] [Google Scholar]
- V. Weisskopf, Statistics and nuclear reactions, Phys. Rev. 52, 295 (1937) [CrossRef] [Google Scholar]
- A. Ferrari, P.R Sala, J. Ranft, S. Roesler, Cascade particles, nuclear evaporation, and residual nuclei in high-energy hadron – nucleus interactions, Z. Phys. C 70, 413 (1996) [CrossRef] [Google Scholar]
- E. Fermi, High-energy nuclear events, Prog. Theor. Phys. 5, 570 (1950) [CrossRef] [Google Scholar]
- M. Epherre and E. Gradsztajn, Calcul de la Spallation de 12C et 16O par des protons de 70 a 200 MeV, J. Phys. 18, 48 (1967) [Google Scholar]
- F. Atchison, Spallation and fission in heavy metal nuclei under medium energy proton bombardement, Kernforschungsanlage Juelich GmbH (Germany), Tech. Rep. Juel-Conf–34, 1980. [Google Scholar]
- A. Ferrari, P.R. Sala, J. Ranft, S. Roesler, The Production of residual nuclei in peripheral high-energy nucleus-nucleus interactions, Z. Phys. C 71, 75 (1996) [CrossRef] [Google Scholar]
- R. Capote et al., RIPL – Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations, Nucl. Data Sheets, 110, 3107 (2009) [CrossRef] [Google Scholar]
- G. Battistoni, J. Bauer, T.T Boehlen, F. Cerutti et al., The FLUKA Code: An Accurate Simulation Tool for Particle Therapy, Front. Oncol. 6, 116 (2016) [CrossRef] [Google Scholar]
- A. Fedynitch, R. Engel, “Revision of the high energy interaction models PHOJET/DPMJET-III, in 14th International Conference on Nuclear Reaction Mechanisms, Varenna, Italy (2015), p. 291 [Google Scholar]
- S. Roesler, R. Engel, J. Ranft, The Monte Carlo Event Generator DPMJET-III, in Proc. MonteCarlo 2000 Conference, Lisbon, October 23–26 2000, edited by A. Kling, F. Barão, M. Nakagawa, L. Távora, P. Vaz (Springer-Verlag Berlin, 2001), pp. 1033–1038. [Google Scholar]
- V. Andersen, F. Ballarini, G. Battistoni, M. Campanella et al., The FLUKA code for space applications: recent developments, Adv. Space Res. 34, 1302 (2004) [CrossRef] [Google Scholar]
- F. Ballarini, G. Battistoni, M. Brugger, M. Campanella et al., The physics of the FLUKA code: Recent developments, Adv. Space Res. 40, 1339 (2007) [CrossRef] [Google Scholar]
- A. Fedynitch, https://github.com/DPMJET/ [Google Scholar]
- H. Sorge, H. Stocker, W. Greiner, Relativistic quantum molecular dynamics approach to nuclear collisions at ultrarelativistic energies, Nucl. Phys. A 498, 567 (1989) [CrossRef] [Google Scholar]
- H. Sorge, Flavor production in Pb(160 A GeV) on Pb collisions: Effect of color ropes and hadronic rescattering, Phys. Rev. C 52, 3291 (1995) [CrossRef] [Google Scholar]
- H. Aiginger, V. Andersen, F. Ballarini, G. Battistoni et al., The FLUKA code: New developments and application to 1 Gev/n iron beams, Adv. Space Res. 35, 214 (2005) [CrossRef] [Google Scholar]
- M. Cavinato, E. Fabrici, E. Gadioli, E. Gadioli Erba, E. Risi, Boltzmann master equation theory of angular distributions in heavy-ion reactions, Nucl. Phys. A 643, 15 (1998) [CrossRef] [Google Scholar]
- F. Cerutti, G. Battistoni, G. Capezzali, P. Colleoni et al., Low energy nucleus–nucleus reactions: the BME approach and its interface with FLUKA, in Proc. 11th Int. Conf. on Nuclear Reaction Mechanisms, Varenna, Italy (2006) [Google Scholar]
- C. Birattari, E.D Ponti, A. Esposito, A. Ferrari, M. Pelliccioni, M. Silari, Measurements and characterization of high energy neutron fields, Nucl. Instrum. Methods Phys. Res. Sect. A 338, 534 (1994) [CrossRef] [Google Scholar]
- A. Fassò, A. Ferrari, J. Ranft, P. R. Sala, G. R. Stevenson, J.M. Zazula, A comparison of FLUKA simulations with measurements of fluence and dose in calorimeter structures, Nucl. Instrum. Methods Phys. Res. Sect. A 332, 459 (1993) [CrossRef] [Google Scholar]
- R.E. MacFarlane, A.C Kahler, Methods for Processing ENDF/B-VII with NJOY, Nucl. Data Sheets 111, 2739 (2010) [CrossRef] [Google Scholar]
- R. Macfarlane, D.W Muir, R.M Boicourt, I.I.I. Kahler, J.L. Conlin, The NJOY Nuclear Data Processing System, Version 2016, Los Alamos National Laboratory (LANL), Los Alamos, NM (United States), Tech. Rep. LA-UR-17-20093, Jan. 2017 [Google Scholar]
- E. Cuccoli, A. Ferrari, G. Panini, A group library from JEF 1.1 for flux calculations in the LHC machine detectors, Tech. Rep. JEF-DOC-340, 1991. [Google Scholar]
- D. E. Cullen, Epics2017 april 2019 status report, IAEA, Tech. Rep. IAEA-NDS-228, 2019 [Google Scholar]
- T.T. Böhlen, A. Ferrari, V. Patera, P.R. Sala, Describing Compton scattering and two-quanta positron annihilation based on Compton profiles: two models suited for the Monte Carlo method, J. Instrum. 7, P07018 (2012) [Google Scholar]
- F. Sauter, Über den atomaren photoeffekt in der K-Schale nach der relativistischen wellenmechanik diracs, Ann. Phys. 403, 454 (1931) [CrossRef] [Google Scholar]
- A. Fassò, A. Ferrari, J. Ranft, P. Sala, FLUKA: performances and applications in the intermediate energy range, in Proceedings of 1st the specialists’ meetings on Shielding Aspects of Accelerators, Target and Irradiation Facilities (Arlington, Texas, OECD-NEA, 1995), p. 287 [Google Scholar]
- P. Aarnio, A. Fassò, A. Ferrari, J.-H. Moehring et al., Electron-photon transport: always so good as we think? experience with FLUKA, in Proc. of the MC93 Int. Conf. on Monte Carlo Simulation in High-Energy and Nuclear Physics (World Scientific, 1994), p. 100. [Google Scholar]
- S.M. Seltzer, M.J. Berger, Bremsstrahlung energy spectra from electrons with kinetic energy 1 keV–10 GeV incident on screened nuclei and orbital electrons of neutral atoms with Z = 1–100, Atomic Data Nucl. Data Tables 35, 345 (1986) [CrossRef] [Google Scholar]
- M.L. Ter-Mikaelian, High-energy Electromagnetic Processes in Condensed Media (Wiley-Interscience, New York, 1972) [Google Scholar]
- J. Lascaud, P. Dash, M. Würl, H. Wieser et al., Enhancement of the ionoacoustic effect through ultrasound and photoacoustic contrast agents, Sci. Rep. 11, 2725 (2021) [CrossRef] [Google Scholar]
- M. Babicz, S. Bordoni, A. Fava, U. Kose et al., A measurement of the group velocity of scintillation light in liquid argon, J. Instrum. 15, P09009 (2020) [CrossRef] [Google Scholar]
- A. Ferrari, P.R Sala, R. Guaraldi, F. Padoani, An improved multiple scattering model for charged particle transport, Nucl. Instrum. Methods Phys. Res. Sect. B 71, 412 (1992) [CrossRef] [Google Scholar]
- H. Bethe, Theory of the Passage of Fast Corpuscular Rays Through Matter, Ann. Phys. 5, 325 (1930) [CrossRef] [Google Scholar]
- H. Bethe, Bremsformel für Elektronen relativistischer Geschwindigkeit, Z. Phys. 76, 293 (1932) [CrossRef] [Google Scholar]
- H. Bethe, W. Heitler, On the stopping of fast particles and on the creation of positive electrons, Proc. R. Soc. Lond. A Math. Phys. Sci. 146, 83 (1934) [Google Scholar]
- F. Bloch, Zur Bremsung Rasch Bewegter Teilchen beim Durchgang durch Materie, Ann. Phys. 408, 285 (1933) [CrossRef] [Google Scholar]
- F. Bloch, Bremsvermögen von Atomen mit mehreren Elektronen, Z. Phys. 81, 363 (1933) [CrossRef] [Google Scholar]
- F. Horst, A. Ferrari, P. Sala, C. Schuy, M. Durante, U. Weber, Precise measurement of the Bragg curve for 800 MeV/u 238U ions stopping in polyethylene and its implications for calculation of heavy ion ranges, J. Instru. 17, P12019 (2022) [CrossRef] [Google Scholar]
- W.H. Barkas, N.J Dyer, H.H Heckmann, Resolution of the σ−-mass anomaly, Phys. Rev. Lett. 11, 26 (1963) [CrossRef] [Google Scholar]
- I. Schall, D. Schardt, H. Geissel, H. Irnich et al., Charge-changing nuclear reactions of relativistic light-ion beams (5 ≤ Z ≤ 10) passing through thick absorbers, Nucl. Instrum. Methods Phys. Res. Sect. B 117, 221 (1996) [CrossRef] [Google Scholar]
- P.V. Vavilov, Ionization Losses of High-Energy Heavy Particles, Sov. Phys. JETP 5, 749 (1957) [Google Scholar]
- M. Kendall, A. Stuart, J. Ord, Kendall’s Advanced Theory of Statistics, vol 3: Design and Analysis, and Time Series (Oxford University Press, New York, 1987) [Google Scholar]
- O. Blunck K. Westphal, Zum energieverlust energiereicher elektronen in dünnen schichten, Z. Phys. 130, 641 (1951) [CrossRef] [Google Scholar]
- Experimental Nuclear Reaction Data (EXFOR), Available: https://www-nds.iaea.org/exfor [Google Scholar]
- R. Engel, Hadronic interactions, ISAPP School 2018. Available: https://indico.cern.ch/event/719824 [Google Scholar]
- U. Fano, Inelastic collisions and the Molière theory of multiple scattering, Phys. Rev. 93, 117 (1954) [CrossRef] [Google Scholar]
- R. Ulrich, Extension of the measurement of the proton-air cross section with the Pierre Auger Observatory, PoS ICRC2015, 401 (2016) [Google Scholar]
- P. Abreu, M. Aglietta, E.J Ahn, I. F. M. Albuquerque et al., Measurement of the proton-air cross section at with the Pierre Auger Observatory, Phys. Rev. Lett. 109, 062002 (2012) [CrossRef] [PubMed] [Google Scholar]
- R.U. Abbasi, M. Abe, T. Abu-Zayyad, M. Allen et al., Measurement of the proton-air cross section with telescope array’s middle drum detector and surface array in hybrid mode, Phys. Rev. D 92, 032007 (2015) [CrossRef] [Google Scholar]
- K. Belov, Proton-air inelastic cross-section measurement at ultra-high energies, in Proceedings of the 30th international cosmic rays conference, ICRC07 (2007), p. 1216 [Google Scholar]
- M. Aglietta, B. Alessandro, P. Antonioli, F. Arneodo et al., Measurement of the proton-air inelastic cross section at from the EAS-TOP experiment, Phys. Rev. D 79, 032004 (2009) [CrossRef] [Google Scholar]
- G. Aielli, C. Bacci, B. Bartoli, P. Bernardini et al., Proton-air cross section measurement with the argo-ybj cosmic ray experiment, Phys. Rev. D 80, 092004 (2009) [CrossRef] [Google Scholar]
- N.M. Nesterova, Results from investigations at the Tien Shan Mountain cosmic ray station into the proton-air inelastic interaction cross-section at primary cosmic ray energies of 0.5–5PeV, Bull. Russ. Acad. Sci. Phys. 77, 629 (2013) [CrossRef] [Google Scholar]
- H.H. Mielke, M. Foller, J. Engler, J. Knapp, Cosmic ray hadron flux at sea level up to 15TeV, J. Phys. G: Nucl. Part. Phys. 20, 637 (1994) [CrossRef] [Google Scholar]
- S. P. Knurenko, V. R. Sleptsova, I. E. Sleptsov, N. N. Kalmykov, S. S. Ostapchenko, Longitudinal EAS development at E(0) = 1018eV to 3 × 1019 eV and the QGSJET model, in 26th International Cosmic Ray Conference (1999) [Google Scholar]
- M. Honda, M. Nagano, S. Tonwar, K. Kasahara et al., Inelastic cross section for p-air collisions from air shower experiments and total cross section for p-p collisions up to , Phys. Rev. Lett. 70, 525 (1993) [CrossRef] [Google Scholar]
- C.H. Llewellyn Smith, Neutrino reactions at accelerator energies, Phys. Rep. 3, 261 (1972) [CrossRef] [Google Scholar]
- F. Arneodo, P. Benetti, M. Bonesini, A. B. di Tigliole et al., Performance of a liquid argon time projection chamber exposed to the CERN west area neutrino facility neutrino beam, Phys. Rev. D 74, 112001 (2006) [CrossRef] [Google Scholar]
- D. Rein, L.M Sehgal, Neutrino-excitation of baryon resonances and single pion production, Ann. Phys. 133, 79 (1981) [CrossRef] [Google Scholar]
- G. Battistoni, A. Ferrari, M. Lantz, P. Sala, and G. Smirnov, A neutrino-nucleon interaction generator for the FLUKA Monte Carlo code, in 12th International Conference on Nuclear Reaction Mechanisms, Varenna, Italy (2009) [Google Scholar]
- G. Battistoni, A. Ferrari, M. Lantz, P. R. Sala, G. Smirnov, Neutrino interactions with FLUKA, Acta Phys. Pol. B 40, 2491 (2009) [Google Scholar]
- M. Glück, E. Reya, A. Vogt, Dynamical parton distributions revisited, Eur. Phys. J. C – Part. Fields 5, 461 (1998) [Google Scholar]
- M. Bertini, M. Giffon, L.L Jenkovszky, F. Paccanoni, E. Predazzi, “The pomeron in elastic and deep inelastic scattering, La Rivista del Nuovo Cimento (1978–1999) 19, 1 (1996) [CrossRef] [Google Scholar]
- M. Antonello, B. Baibussinov, P. Benetti, E. Calligarich et al., Experimental search for the “LSND anomaly” with the ICARUS detector in the CNGS neutrino beam, Eur. Phys. J. C, 73, 2345 (2013) [CrossRef] [Google Scholar]
- R. Acciarri, C. Adams, J. Asaadi, B. Baller et al., Demonstration of MeV-scale physics in liquid argon time projection chambers using ArgoNeuT, Phys. Rev. D 99, 012002 (2019) [CrossRef] [Google Scholar]
- H. Bateman, The solution of a system of differential equations occurring in the theory of radioactive transformations, Proc. Cambridge Philos. Soc. 15, 423 (1910) [Google Scholar]
- G.P. Ford, K. Wolfsberg, B.R Erdal, Independent yields of the isomers of 133Xe and 135Xe for neutron-induced fission of 233U, 235U, 238U, and 242Amm, Phys. Rev. C 30, 195 (1984) [CrossRef] [Google Scholar]
- https://www.nndc.bnl.gov [Google Scholar]
- V. A. Karmanov, L.A. Kondratyuk, Inelastic screening for high energy nucleon scattering on complex nuclei, Pisma Zh. Eksp. Teor. Fiz. 18, 451 (1973) [Google Scholar]
- D. Diamond, B. Margolis, Inelastic screening and total nuclear cross sections, Phys. Rev. D 16, 1365 (1977) [CrossRef] [Google Scholar]
- J.R. Jordan, S. Baum, P. Stengel, A. Ferrari et al., Measuring changes in the atmospheric neutrino rate over gigayear timescales, Phys. Rev. Lett. 125, 231802 (2020) [CrossRef] [Google Scholar]
- M.N. Mazziotta, P.D. L. T. Luque, L. Di Venere, A. Fassò et al., Cosmic-ray interactions with the Sun using the FLUKA code, Phys. Rev. D 101 (2020) [Google Scholar]
- R. Engel, A. Ferrari, M. Roth, M. Schimassek, D. Schmidt, D. Veberic, Neutron production in extensive air showers, in Proceedings of 37th International Cosmic Ray Conference – PoS(ICRC2021) (SISSA Medialab, Trieste, Italy, 2021) [Google Scholar]
- M.L. Schimassek, R. Engel, A. Ferrari, M. Roth, D. Schmidt, D. Veberic, Simulations of neutrons in extensive air showers, in Proceedings of 38th International Cosmic Ray Conference – PoS(ICRC2023) (SISSA Medialab, Trieste, Italy, 2023) [Google Scholar]
- P. De La Torre Luque, M. Mazziotta, A. Ferrari, F. Loparco, P. Sala, D. Serini, FLUKA cross sections for cosmic-ray interactions with the DRAGON2 code, J. Cosmol. Astropart. Phys. 2022, 008 (2022) [CrossRef] [Google Scholar]
- N. M. Agababyan et al., Inclusive production of vector mesons in π+p interactions at 250GeV/c, Z. Phys. C 46, 387 (1990) [CrossRef] [Google Scholar]
- A. Aduszkiewicz et al., Measurement of meson resonance production in π−+ C interactions at SPS energies, Eur. Phys. J. C 77, 626 (2017) [CrossRef] [Google Scholar]
- M. Adamus et al., Charged Particle Production in K+p, π+p and pp Interactions at 250GeV/c, Z. Phys. C 39, 311 (1988) [CrossRef] [Google Scholar]
- A. Breakstone et al., Inclusive charged particle cross-sections in full phase space from proton proton interactions at ISR energies, Z. Phys. C 69, 55 (1995) [CrossRef] [Google Scholar]
- J. Crawford, M. Daum, G. Eaton, R. Frosch et al., Measurement of cross sections and asymmetry parameters for the production of charged pions from various nuclei by 585-MeV protons, Phys. Rev. C 22, 1184 (1980) [CrossRef] [Google Scholar]
- S. Eidelman et al., Review of Particle Physics, Phys. Lett. B 592, 1 (2004) [CrossRef] [Google Scholar]
- G. Antchev et al., First measurement of the total proton-proton cross section at the LHC energy of = 7 TeV, EPL 96, 21002 (2011) [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- P. Antchev, G. Aspell, I. Atanassov, V. Avati, J. Baechler et al., Luminosity-independent measurements of total, elastic and inelastic cross-sections at TeV, EPL 101, 21004 (2013) [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- G. Aad et al., Measurement of the inelastic proton-proton cross-section at TeV with the ATLAS detector, Nat. Commun. 2, 463 (2011) [CrossRef] [Google Scholar]
- B. Abelev et al., Measurement of inelastic, single- and double-diffraction cross sections in proton–proton collisions at the LHC with ALICE, Eur. Phys. J. C 73, 2456 (2013) [CrossRef] [Google Scholar]
- V. Khachatryan et al., Measurement of diffraction dissociation cross sections in pp collisions at = 7 TeV, Phys. Rev. D 92, 012003 (2015) [CrossRef] [Google Scholar]
- G. Aad et al., Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC, New J. Phys. 13, 053033 (2011) [CrossRef] [Google Scholar]
- B. Abelev et al., Pseudorapidity density of charged particles in p + Pb collisions at , Phys. Rev. Lett. 110, 032301 (2013) [CrossRef] [Google Scholar]
- R. Engel, Photoproduction within the two component dual parton model. 1. Amplitudes and cross-sections, Z. Phys. C 66, 203 (1995) [CrossRef] [Google Scholar]
- R. Engel, J. Ranft, Hadronic photon-photon interactions at high-energies, Phys. Rev. D 54, 4244 (1996) [CrossRef] [Google Scholar]
- T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual, J. High Energy Phys. 2006, 026 (2006) [CrossRef] [Google Scholar]
- R. Engel, J. Ranft, S. Roesler, Photoproduction off nuclei and point - like photon interactions 1. Cross-sections and nuclear shadowing, Phys. Rev. D 55, 6957 (1997) [CrossRef] [Google Scholar]
- A. Fedynitch, Cascade equations and hadronic interactions at very high energies, Ph.D. dissertation, KIT, Karlsruhe, Dept. Phys., 11 2015 [Google Scholar]
- S. Dulat, T.J Hou, J. Gao, M. Guzzi et al., The CT14 Global Analysis of Quantum Chromodynamics (2015) [Google Scholar]
- M.L. Good, W.D Walker, Diffraction disssociation of beam particles, Phys. Rev. 120, 1857 (1960) [CrossRef] [Google Scholar]
- K.J. Golec-Biernat, M. Wusthoff, Saturation effects in deep inelastic scattering at low Q2 and its implications on diffraction, Phys. Rev. D 59, 014017 (1998) [CrossRef] [Google Scholar]
- A. Koning, D. Rochman, J.-C. Sublet, N. Dzysiuk, M. Fleming, S. Van der Marck, Tendl: complete nuclear data library for innovative nuclear science and technology, Nucl. Data Sheets 155, 1 (2019) [CrossRef] [Google Scholar]
- A. Nadasen, P. Schwandt, P. Singh, W. Jacobs et al., Elastic scattering of 80–180 MeV protons and the proton-nucleus optical potential, Phys. Rev. C 23, 1023 (1981) [CrossRef] [Google Scholar]
- G.D. Alkhazov, S.L Belostotsky, A.A Vorobev, O.A. Domchenkov et al., Elastic scattering of 1 GeV protons and matter distributions in 1p shell nuclei. (in Russian), Yad. Fiz. 42, 8 (1985) [Google Scholar]
- H.R. Blieden et al., Measurement of Small Angle Elastic Scattering of Pions and Protons by Nuclei, Phys. Rev. D 11, 14 (1975) [CrossRef] [Google Scholar]
- A. Schiz et al., Hadron-Nucleus Elastic Scattering at 70 GeV/c, 125 GeV/c and 175 GeV/c, Phys. Rev. D 21, 3010(1980) [CrossRef] [Google Scholar]
- A. Ferrari, P. Sala, presented at the International Conference on Nuclear Data for Science and Technology, NDST-97, Trieste, 1997, unpublished. [Google Scholar]
- D.A. Brown, M.B. Chadwick, R. Capote, A. Kahler et al., ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148, 1 (2018) [CrossRef] [Google Scholar]
- I. Osamu, I. Nobuyuki, S. Keiichi, I. Akira et al., Status of JENDL, EPJ Web Conf. 239, 09002 (2020) [CrossRef] [EDP Sciences] [Google Scholar]
- D.O. Caldwell, V.B Elings, W.P Hesse, R.J Morrison, F.V Murphy, D.E Yount, Total Hadronic Photoabsorption Cross-Sections on Hydrogen and Complex Nuclei from 4 GeV to 18 GeV, Phys. Rev. D 7, 1362 (1973) [CrossRef] [Google Scholar]
- G.R. Brookes et al., Total hadronic photoabsorption cross-sections of nuclei for photons in the GeV energy range, Phys. Rev. D 8, 2826 (1973) [CrossRef] [Google Scholar]
- S. Michalowski, D. Andrews, J. Eickmeyer, T. Gentile et al., Experimental Study of Nuclear Shadowing in Photoproduction, Phys. Rev. Lett. 39, 737 (1977) [CrossRef] [Google Scholar]
- E. Arakelyan, G. Bayatyan, G. Vartanyan, N. Grigoryan et al., Measurement of total hadronic photoproduction cross sections on the nuclei C, Cu and Pb for energies Eγ=(12–30) GeV, Phys. Lett. B 79, 143 (1978) [CrossRef] [Google Scholar]
- H. Ströher, R. Fischer, J. Drexler, K. Huber et al., Absolute cross sections for electron- and positron-induced fission of 238U and tests of DWGA virtual-photon spectra, Nucl. Phys. A 378, 237 (1982) [CrossRef] [Google Scholar]
- J.D.T. Arruda Neto, S.B. Herdade, B.S. Bhandari, I.C. Nascimento, Electrofission and photofission of 238U in the energy range 6–60 MeV, Phys. Rev. C 14, 1499 (1976) [CrossRef] [Google Scholar]
- T. Kawano, Y. Cho, P. Dimitriou, D. Filipescu et al., IAEA photonuclear data library 2019, Nucl. Data Sheets 163, 109 (2020) [CrossRef] [Google Scholar]
- A. Fassò, A. Ferrari, P.R. Sala, Total giant resonance photonuclear cross sections for light nuclei: a database for the FLUKA Monte Carlo transport code, in Proc. 3rd Specialists’ Meeting on Shielding Aspects of Accelerators, Targets and Irradiation Facilities (1997), p. 61 [Google Scholar]
- D. Drechsel, S.S Kamalov, L. Tiator, Unitary isobar model – MAID2007, Eur. Phys. J. A 34, 69 (2007) [CrossRef] [Google Scholar]
- N. Bianchi, V. Muccifora, E. De Sanctis, A. Fantoni et al., Total hadronic photoabsorption cross section on nuclei in the nucleon resonance region, Phys. Rev. C 54, 1688 (1996) [CrossRef] [Google Scholar]
- H.H. Braun, A. Fassò, A. Ferrari, J.M. Jowett, P.R. Sala, G.I. Smirnov, Hadronic and electromagnetic fragmentation of ultrarelativistic heavy ions at LHC, Phys. Rev. ST Accel. Beams 17, 021006 (2014) [CrossRef] [Google Scholar]
- F. Cerutti, A. Empl, A. Fedynitch, A. Ferrari et al., Nuclear model developments in FLUKA for present and future applications, EPJ Web Conf. 146, 12005 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
- C.A. Bertulani, G. Baur, Electromagnetic processes in relativistic heavy ion collisions, Phys. Rep. 163, 299 (1988) [CrossRef] [Google Scholar]
- C.S. Vargas, D. Onley, L. Wright, A new technique for calculating virtual photon spectra, Nucl. Phys. A 288, 45 (1977) [CrossRef] [Google Scholar]
- F. Zamani-Noor, D. Onley, Virtual photon theory in electrofission, Phys. Rev. C 33, 1354 (1986) [CrossRef] [Google Scholar]
- P. Durgapal, D. Onley, Virtual photon spectrum in second-order born approximation, Phys. Rev. C 27, 523 (1983) [CrossRef] [Google Scholar]
- P. Durgapal, D. Onley, Program to calculate virtual photon spectrum in second order born approximation, Comput. Phys. Commun. (Netherlands) 32, 3 (1984) [Google Scholar]
- M.L. Justice, Y. Blumenfeld, N. Colonna, D.N. Delis et al., Electromagnetic dissociation of 238U at 120MeV/nucleon, Phys. Rev. C 49, R5 (1994) [CrossRef] [Google Scholar]
- H. Sato, T. Kurosawa, H. Iwase, T. Nakamura, Y. Uwamino, N. Nakao, Measurements of double differential neutron production cross sections by 135MeV/n He, C, Ne and 95MeV/n Ar ions, Phys. Rev. C 64, 034607 (2001) [CrossRef] [Google Scholar]
- Y. Iwata, T. Murakami, H. Sato, H. Iwase et al., Double-differential cross sections for the neutron production from heavy-ion reactions at energies E/A=290–600 MeV, Phys. Rev. C 64, 054609 (2001) [CrossRef] [Google Scholar]
- D. Satoh, T. Kurosawa, T. Sato, A. Endo et al., Reevaluation of secondary neutron spectra from thick targets upon heavy-ion bombardment, Nucl. Instrum. Methods Phys. Res. Sect. A 583, 507 (2007) [CrossRef] [Google Scholar]
- V. Rubchenya, W. Trzaska, D. Vakhtin, J. Áystö et al., Neutron and fragment yields in proton-induced fission of 238U at intermediate energies, Nucl. Instrum. Methods Phys. Res. Sect. A 463, 653 (2001) [CrossRef] [Google Scholar]
- M. V. A.L. Nichols, D.L. Aldama, Handbook of nuclear data for safeguards: database extensions, august 2008, International Atomic Energy Agency, Tech. Rep. INDC(NDS)-0534, 2008. [Google Scholar]
- A.J.M. Plompen, O. Cabellos, C. De Saint Jean, M. Fleming et al., The joint evaluated fission and fusion nuclear data library, JEFF–3.3, Eur. Phys. J. A 56, 181 (2020) [CrossRef] [Google Scholar]
- K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto et al., JENDL–4.0: A new library for nuclear science and engineering, J. Nucl. Sci. Technol. 48, 1 (2011) [CrossRef] [Google Scholar]
- J.C. Sublet, L.W Packer, J. Kopecky, R.A Forrest, A.J Konning, D.A Rochman, The European Activation File: EAF-2010 neutron-induced cross section library,” Tech. Rep., Jan. 2020. [Google Scholar]
- D. E. Cullen, Prepro 2019, IAEA, Tech. Rep. IAEA-NDS-229, 2019. [Google Scholar]
- C. Birattari, A. Esposito, A. Ferrari, T. Pelliccioni, Mand Rancati, M. Silari, The extended range neutron rem counter linus: Overview and latest developments, Rad. Protect. Dosim. 76, 135 (1998) [CrossRef] [Google Scholar]
- M. Pillon, M. Angelone, F. Belloni, W. Geerts et al., High-resolution measurements of the exited states (n,pn), (n,dn) C–12 cross sections, EPJ Web of Conf. 146, 11005 (2017) [CrossRef] [EDP Sciences] [Google Scholar]
- F. Franceschini, F. H. Ruddy, Silicon carbide neutron detectors, in Properties and Applications of Silicon Carbide, edited by R. Gerhardt (IntechOpen, Rijeka, 2011) [Google Scholar]
- G. Battistoni, M. Bisogni, M. Campanella, M. Pietro Carante et al., The FLUKA group- and point-wise neutron treatment, in Proceedings of the 15th Workshop on Shielding Aspects of Accelerators, Targets, and Irradiation Facilities (SATIF-15), East Lansing, Michigan, USA, September 20-23, 2022 (2022), in press. [Google Scholar]
- T. Ogawa, T. Sato, S. Hashimoto, K. Niita, Development of a reaction ejectile sampling algorithm to recover kinematic correlations from inclusive cross-section data in Monte-Carlo particle transport simulations, Nucl. Instrum. Methods Phys. Res. Sect. A, 763, 575 (2014) [CrossRef] [Google Scholar]
- B. N. Laboratory, Evaluated nuclear structure data file, https://www.nndc.bnl.gov/ensdf/ [Google Scholar]
- D. Lopez Aldama, A. Trkov, Acemaker-2.0 a code package to produce ace-formatted files for mcnp calculations, IAEA, Tech. Rep. IAEA-NDS-223, 2021, https://github.com/IAEA-NDS/ACEMAKER [Google Scholar]
- D.E. Cullen, L.F. Hansen, E.M. Lent, E.F. Plechaty, Thermal scattering law data: Implementation and testing using the Monte Carlo neutron transport codes COG, MCNP and TART, Lawrence Livermore National Laboratory, USA, Tech. Rep. UCRL-ID-153656, 2003. [Google Scholar]
- J.L. Conlin, D.K. Parsons, Release of continuous representation for S(α, β) ACE data, Los Alamos National Laboratory, USA, Tech. Rep. LA-UR-14-21878, 2014. [Google Scholar]
- D.B. Pelowitz, J.T. Goorley, M.R. James, T.E. Booth et al., MCNP6 User’s Manual, Los Alamos National Laboratory, Los Alamos, NM, USA, Tech. Rep. LA-CP-13-00634, May 2013, This document is provided in the MCNP6 release package available from RSICC and is not accessible from the MCNP website. Code Version 6.1. [Google Scholar]
- S. Xiao, T. Frosio, Hutch shielding requirements for LCLS-II synchrotron radiation and FEL beams, SLAC, Tech. Rep. RP-19-02-R2, 2023. [Google Scholar]
- V.G. Kohn, On the theory of reflectivity by an x-ray multilayer mirror, Physica Status Solidi (b) 187, 61 (1995) [CrossRef] [Google Scholar]
- S. Gill, A process for the step-by-step integration of differential equations in an automatic digital computing machine, Math. Proc. Camb. Phil. Soc. 47, 96 (1951) [CrossRef] [Google Scholar]
- A. Mereghetti, V. Boccone, F. Cerutti, R. Versaci, V. Vlachoudis, The FLUKA linebuilder and element database: tools for building complex models of accelerators beam lines, Conf. Proc. C1205201, WEPPD071 (2012) [Google Scholar]
- M. Santana-Leitner, Y. Nosochkov, T. Raubenheimer, MadFLUKA beam line 3D builder. simulation of beam loss propagation in Accelerators, in Proc. 5th International Particle Accelerator Conference (IPAC’14), Dresden, Germany, June 15-20, 2014, (JACoW, Geneva, Switzerland, 2014), pp. 463–465 [Google Scholar]
- V. Vlachoudis, Flair: A powerful but user friendly graphical interface for fluka, in Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009) (2009) [Google Scholar]
- A. Mirandola, S. Molinelli, F. Vilches, A. Mairani et al., Dosimetric commissioning and quality assurance of scanned ion beams at the italian national center for oncological hadrontherapy, Med. Phys. 42, 5287 (2015) [CrossRef] [Google Scholar]
- T. Tessonnier, S. Ecker, J. Besuglow, J. Naumann et al., Commissioning of helium ion therapy and the first patient treatment with active beam delivery, Int. J. Rad. Oncol. Biol. Phys. 116, 935 (2023) [CrossRef] [Google Scholar]
- T. Böhlen, F. Cerutti, M. Chin, A. Fassò et al., The FLUKA code: developments and challenges for high energy and medical applications, Nucl. Data Sheets 120, 211 (2014) [CrossRef] [Google Scholar]
- K. Parodi, A. Mairani, S. Brons, B. Hasch et al., Monte Carlo simulations to support start-up and treatment planning of scanned proton and carbon ion therapy at a synchrotron-based facility, Phys. Med. Biol. 57, 3759 (2012) [CrossRef] [Google Scholar]
- S. Molinelli, A. Mairani, A. Mirandola, G. Freixas et al., Dosimetric accuracy assessment of a treatment plan verification system for scanned proton beam radiotherapy: one-year experimental results and Monte Carlo analysis of the involved uncertainties, Phys. Med. Biol. 58, 3837 (2013) [CrossRef] [Google Scholar]
- K. Parodi, H. Paganetti, H. Shih, S. Michaud et al., Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy, Int. J. Rad. Oncol. Biol. Phys. 68, 920 (2007) [CrossRef] [Google Scholar]
- G. Battistoni, J. Bauer, T. Böhlen, F. Cerutti et al., The FLUKA code: an accurate simulation tool for particle therapy, Front Oncol. 6, 116 (2016) [CrossRef] [Google Scholar]
- A. Mairani, S. Brons, F. Cerutti, A. Fassò et al., The FLUKA Monte Carlo code coupled with the local effect model for biological calculations in carbon ion therapy, Phys. Med. Biol. 55, 4273 (2010) [CrossRef] [Google Scholar]
- G. Magro, T. Dahle, S. Molinelli, M. Ciocca et al., The FLUKA Monte Carlo code coupled with the NIRS approach for clinical dose calculations in carbon ion therapy, Phys. Med. Biol. 62, 3814 (2017) [CrossRef] [Google Scholar]
- S. Meyer, F. Kamp, T. Tessonnier, A. Mairani et al., Dosimetric accuracy and radiobiological implications of ion computed tomography for proton therapy treatment planning, Phys. Med. Biol. 64, 125008 (2019) [CrossRef] [Google Scholar]
- S. Molinelli, G. Magro, A. Mairani, N. Matsufuji et al., “Dose prescription in carbon ion radiotherapy: How to compare two different RBE-weighted dose calculation systems, Radiother. Oncol. 120, 307 (2016) [CrossRef] [Google Scholar]
- E. Lyngholm, C. H. Stokkevåg, A. Lühr, L. Tian et al., “An updated variable RBE model for proton therapy, Phys. Med. Biol. (2024) [Google Scholar]
- S. Mein, I. Dokic, C. Klein, T. Tessonnier et al., Biophysical modeling and experimental validation of relative biological effectiveness (RBE) for 4-He ion beam therapy, Rad. Oncol. 14, 1 (2019) [CrossRef] [Google Scholar]
- T. Dahle, E. Rusten, C. Stokkevåg, A. Silvoniemi et al., The FLUKA Monte Carlo code coupled with an OER model for biologically weighted dose calculations in proton therapy of hypoxic tumors, Phys. Med. 76, 166 (2020) [CrossRef] [Google Scholar]
- M. P. Carante, C. Aimè, J. J. T. Cajiao, F. Ballarini, Bianca, a biophysical model of cell survival and chromosome damage by protons, c-ions and he-ions at energies and doses used in hadrontherapy, Phys. Med. Biol. 63, 075007 (2018) [CrossRef] [Google Scholar]
- M. Carante, G. Aricó, A. Ferrari, K. Karger et al., In vivo validation of the BIANCA biophysical model: benchmarking against rat spinal cord RBE data, Int. J. Mol. Sci. 21, 3973 (2020) [CrossRef] [Google Scholar]
- A. Embriaco, R. Ramos, M. Carante, A. Ferrari et al., Healthy tissue damage following cancer ion therapy: a radiobiological database predicting lymphocyte chromosome aberrations based on the BIANCA biophysical model, Int. J. Mol. Sci. 22, 10877 (2021) [CrossRef] [Google Scholar]
- W. Kozłowska, M. Carante, G. Aricó, A. Embriaco et al., First application of the BIANCA biophysical model to carbon-ion patient cases, Phys. Med. Biol. 67, 115013 (2022) [CrossRef] [Google Scholar]
- M. Carante, A. Embriaco, G. Aricó, A. Ferrari et al., Biological effectiveness of He-3 and He-4 ion beams for cancer hadrontherapy: a study based on the BIANCA biophysical model, Phys. Med. Biol. 66, 1950B09 (2021) [Google Scholar]
- R. Ramos, A. Embriaco, M. Carante, A. Ferrari et al., Radiobiological damage by space radiation: extension of the BIANCA model to heavy ions up to iron, and pilot application to cosmic ray exposure, J. Radiol. Protect. 42, 021523 (2022) [CrossRef] [Google Scholar]
- R. Ramos, M. Carante, A. Ferrari, P. Sala, V. Vercesi, F. Ballarini, A mission to Mars: prediction of GCR doses and comparison with astronaut dose limits, Int. J. Mol. Sci. 24, 2328 (2023) [CrossRef] [Google Scholar]
- R. Ramos, M. Carante, E. Bernardini, A. Ferrari et al., A method to predict space radiation biological effectiveness for non-cancer effects following intense Solar Particle Events, Life Sci. Space Res. 41, 210 (2024) [CrossRef] [Google Scholar]
- K. Parodi, F. Ponisch, W. Enghardt, Experimental study on the feasibility of in-beam PET for accurate monitoring of proton therapy, IEEE Trans. Nucl. Sci. 52, 778 (2005) [CrossRef] [Google Scholar]
- K. Parodi, A. Ferrari, F. Sommerer, H. Paganetti, Clinical CT-based calculations of dose and positron emitter distributions in proton therapy using the FLUKA Monte Carlo code, Phys. Med. Biol. 52, 3369, (2007) [CrossRef] [Google Scholar]
- F. Sommerer, F. Cerutti, K. Parodi, A. Ferrari, W. Enghardt, H. Aiginger, In-beam PET monitoring of mono-energetic 16-O and 12-C beams: experiments and FLUKA simulations for homogeneous targets, Phys. Med. Biol. 54, 3979 (2009) [CrossRef] [Google Scholar]
- F. Botta, A. Mairani, R.F Hobbs, A.V. Gil et al., Use of the FLUKA Monte Carlo code for 3D patient-specific dosimetry on PET-CT and SPECT-CT images*, Phys. Med. Biol. 58, 8099 (2013) [CrossRef] [Google Scholar]
- P. Ortega, T. Böhlen, F. Cerutti, M. Chin et al., A dedicated tool for PET scanner simulations using FLUKA, in 2013 3rd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (ANIMMA) (IEEE, 2013), pp. 1–7 [Google Scholar]
- P. G. Ortega, T. Boehlen, F. Cerutti, M. P. Chin et al., 74: Development of a PET scanner simulation package for FLUKA, Radiother. Oncol. 110, S37 (2014) [CrossRef] [Google Scholar]
- R. Augusto, J. Bauer, O. Bouhali, C. Cuccagna et al., An overview of recent developments in FLUKA PET tools, Phys. Med. 54, 189 (2018) [CrossRef] [Google Scholar]
- S. Muraro, G. Battistoni, A. Kraan, Challenges in Monte Carlo simulations as clinical and research tool in particle therapy: A review, Front. Phys. 8, 567800 (2020) [CrossRef] [Google Scholar]
- C. Robert, G. Dedes, G. Battistoni, T. Böhlen et al., Distributions of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes, Phys. Med. Biol. 58, 2879 (2013) [CrossRef] [Google Scholar]
- A.-C. Knopf, K. Parodi, H. Paganetti, T. Bortfeld et al., Accuracy of proton beam range verification using post-treatment positron emission tomography/computed tomography as function of treatment site, Int. J. Rad. Oncol. Biol. Phys. 79, 297 (2011) [CrossRef] [Google Scholar]
- J. Bauer, D. Unholtz, F. Sommerer, C. Kurz et al., Implementation and initial clinical experience of offline PET/CT-based verification of scanned carbon ion treatment, Radiother. Oncol. 107, 218 (2013) [CrossRef] [Google Scholar]
- V. Rosso, G. Battistoni, N. Belcari, N. Camarlinghi et al., Dopet: an in-treatment monitoring system for particle therapy, Radiother. Oncol. 118, S92 (2016) [CrossRef] [Google Scholar]
- A. Kraan, G. Battistoni, N. Belcari, N. Camarlinghi et al., Proton range monitoring with in-beam PET: Monte Carlo activity predictions and comparison with cyclotron data, Phys. Med.: Eur. J. Med. Phys. 30, 559 (2014) [Google Scholar]
- S. Muraro, G. Battistoni, N. Belcari, M. Bisogni et al., Proton therapy treatment monitoring with the DoPET system: activity range, positron emitters evaluation and comparison with Monte Carlo predictions, J. Instrum. 12, C12 026 (2017) [Google Scholar]
- A. Topi, S. Muraro, G. Battistoni, N. Belcari et al., Monitoring proton therapy through in-beam PET: An experimental phantom study, IEEE Trans. Rad. Plasma Med. Sci. 4, 194 (2020) [Google Scholar]
- M.G. Bisogni, A. Attili, G. Battistoni, N. Belcari et al., INSIDE in-beam positron emission tomography system for particle range monitoring in hadrontherapy, J. Med. Imag. 4, 011005 (2016) [CrossRef] [Google Scholar]
- J. Wang, L. Cruz, M. Lu, Pixelated prompt gamma imaging detector for online measurement of proton beam: Monte Carlo feasibility study by fluka, Rad. Detect. Technol. Methods 2, 4 (2018) [CrossRef] [Google Scholar]
- A. Missaglia, A. Bourkadi-Idrissi, F. Casamichiela, D. Mazzucconi et al., Prompt-gamma fall-off estimation with C-ion irradiation at clinical energies, using a knife-edge slit camera: A Monte Carlo study, Phys. Med. 107, 102554 (2023) [CrossRef] [Google Scholar]
- K.S. Ytre-Hauge, K. Skjerdal, J. Mattingly, I. Meric, A Monte Carlo feasibility study for neutron based real-time range verification in proton therapy, Sci. Rep. 9, 2011 (2019) [CrossRef] [Google Scholar]
- L. Ghesquière-Diérickx, R. Félix-Bautista, A. Schlechter, L. Kelleter et al., Detecting perturbations of a radiation field inside a head-sized phantom exposed to therapeutic carbon-ion beams through charged-fragment tracking, Med. Phys. 49, 1776 (2022) [CrossRef] [Google Scholar]
- F. Pennazio, G. Battistoni, M. Bisogni, N. Camarlinghi et al., Carbon ions beam therapy monitoring with the INSIDE in-beam PET, Phys. Med. Biol. 63, 145018 (2018) [CrossRef] [Google Scholar]
- E. Fiorina, V. Ferrero, G. Baroni, G. Battistoni et al., Detection of interfractional morphological changes in proton therapy: A simulation and in vivo study with the INSIDE in-beam PET, Front. Phys. 8, 578388 (2021) [CrossRef] [Google Scholar]
- A. Kraan, A. Berti, A. Retico, G. Baroni et al., Localization of anatomical changes in patients during proton therapy with in-beam PET monitoring: a voxel-based morphometry approach exploiting Monte Carlo simulations, Med. Phys. 49, 23 (2021) [Google Scholar]
- M. Moglioni, A. Kraan, A. Berti, P. Carra et al., Analysis methods for in-beam PET images in proton therapy treatment verification: a comparison based on Monte Carlo simulations, J. Instrum. 18, C01001 (2023) [CrossRef] [Google Scholar]
- A. Kraan, M. Moglioni, G. Battistoni, D. Bersani et al., Using the gamma-index analysis for inter-fractional comparison of in-beam PET images for head-and-neck treatment monitoring in proton therapy: A Monte Carlo simulation study, Phys. Med. 120, 103329 (2024) [CrossRef] [Google Scholar]
- S. Muraro, G. Battistoni, F. Collamati, E. De Lucia et al., Monitoring of hadrontherapy treatments by means of charged particle detection, Front. Oncol. 6, 177 (2016) [CrossRef] [Google Scholar]
- G. Traini, G. Battistoni, A. Botella, F. Collamati et al., Design of a new tracking device for on-line beam range monitor in carbon therapy, Phys. Med. 34, 18 (2017) [CrossRef] [Google Scholar]
- R.S. Augusto, A. Mohammadi, H. Tashima, E. Yoshida et al., Experimental validation of the FLUKA Monte Carlo code for dose and β+-emitter predictions of radioactive ion beams, Phys. Med. Biol. 63, 215014 (2018) [CrossRef] [Google Scholar]
- D. Boscolo, D. Kostyleva, M.J Safari, V. Anagnostatou et al., Radioactive beams for image-guided particle therapy: The BARB experiment at GSI, Front. Oncol. 11, 737050 (2021) [CrossRef] [Google Scholar]
- V. Favaudon, L. Caplier, V. Monceau, F. Pouzoulet et al., Ultrahigh dose-rate flash irradiation increases the differential response between normal and tumor tissue in mice, Sci. Trans. Med. 6, 245ra93 (2014) [CrossRef] [Google Scholar]
- M.-C. Vozenin, J. Bourhis, M. Durante, Towards clinical translation of FLASH radiotherapy, Nat. Rev. Clin. Oncol. 19, 791 (2022) [CrossRef] [Google Scholar]
- T.T. Böhlen, J.-F. Germond, J. Bourhis, M.-C. Vozenin et al., Normal tissue sparing by FLASH as a function of single-fraction dose: A quantitative analysis, Int. J. Rad. Oncol. Biol. Phys. 114, 1032 (2022) [CrossRef] [Google Scholar]
- T. T. Böhlen, J.-F. Germond, K. Petersson, E.M. Ozsahin et al., Effect of conventional and ultrahigh dose rate FLASH irradiations on preclinical tumor models: A systematic analysis, Int. J. Rad. Oncol. Biol. Phys. 117, 1007 (2023) [CrossRef] [Google Scholar]
- M. Rahman, A. Trigilio, G. Franciosini, R. Moeckli, R. Zhang, T. Böhlen, FLASH radiotherapy treatment planning and models for electron beams, Radiother. Oncol. 175, 210 (2022) [CrossRef] [Google Scholar]
- T.T. Böhlen, J. Germond, E. Traneus, J. Bourhis et al., Characteristics of very high-energy electron beams for the irradiation of deep-seated targets, Med. Phys. 48, 3958 (2021) [CrossRef] [Google Scholar]
- T.T. Böhlen, J. Germond, L. Desorgher, I. Veres et al., Very high-energy electron therapy as light-particle alternative to transmission proton FLASH therapy – an evaluation of dosimetric performances, Radiother. Oncol. 194, 110177 (2024) [CrossRef] [Google Scholar]
- A. Sarti, P. De Maria, G. Battistoni, M. De Simoni et al., Deep seated tumour treatments with electrons of high energy delivered at FLASH rates: The example of prostate cancer, Front. Oncol. 11, 777862 (2021) [CrossRef] [Google Scholar]
- A. Muscato, L. Arsini, G. Battistoni, L. Campana et al., Treatment planning of intracranial lesions with VHEE: comparing conventional and FLASH irradiation potential with state-of-the-art photon and proton radiotherapy, Front. Phys. 11, 1185598 (2023) [CrossRef] [Google Scholar]
- L. Giuliano, F. Bosco, M. Carillo, D.D. Arcangelis et al., Proposal of a VHEE linac for FLASH radiotherapy, J. Phys. Conf. Ser. 2420, 012087 (2023) [CrossRef] [Google Scholar]
- V. Patera, M. Carboni, G. Battistoni, A. Ferrari, Simulation of the electromagnetic component of extensive air showers, Nucl. Inst. Methods Phys. Res. A 356, 514 (1995) [CrossRef] [Google Scholar]
- G. Battistoni, A. Ferrari, C. Forti, E. Scapparone, Simulation of muon transport at high energy: Comparison of few different codes, Nucl. Instrum. Methods Phys. Res. Sect. A 394 136 (1997) [CrossRef] [Google Scholar]
- G. Battistoni, A. Ferrari, P. Lipari, T. Montaruli, P. Sala, T. Rancati, A 3-dimensional calculation of the atmospheric neutrino fluxes, Astropart. Phys. 12, 315 (2000) [CrossRef] [Google Scholar]
- G. Barr, T. Gaisser, T. Stanev, Flux of atmospheric neutrinos, Phys. Rev. D 39, 3532 (1989) [CrossRef] [Google Scholar]
- G. Battistoni, A. Ferrari, T. Montaruli, P. Sala, The FLUKA atmospheric neutrino flux calculation, Astropart. Phys. 19, 269 (2003) [CrossRef] [Google Scholar]
- G. Battistoni, A. Ferrari, T. Montaruli, P. Sala, The atmospheric neutrino flux below 100 MeV: The FLUKA results, Astropart. Phys. 23, 526 (2005) [CrossRef] [Google Scholar]
- B. Zhou, J. Beacom, First detailed calculation of atmospheric neutrino foregrounds to the diffuse supernova neutrino background in super-kamiokande, Phys. Rev. D 109, 103003 (2024) [CrossRef] [Google Scholar]
- G. Battistoni, A. Ferrari, T. Montaruli, P. Sala, Comparison of the FLUKA calculations with CAPRICE94 data on muons in atmosphere, Astropart. Phys. 17, 477 (2002) [CrossRef] [Google Scholar]
- S. Muraro, The calculation of atmospheric muon flux using the FLUKA Monte Carlo code, PhD thesis, University of Milano, 2007, Available at https://inspirehep.net/files/2e89edb71eb8480b8052708f3fdec1e5. [Google Scholar]
- G. Battistoni, A. Ferrari, S. Muraro, P. Sala, Atmospheric muon simulation using the FLUKA mc model, Nucl. Phys. B Proc. Suppl. 168, 286 (2007) [CrossRef] [Google Scholar]
- G. Battistoni, A. Margiotta, S. Muraro, M. Sioli, The FLUKA cosmic ray generator for the high energy region. Results and data comparison for the charge ration of TeV muons detected underground, in Proceedings of the 31th International Cosmic Ray Conference (2009), Vol. 1, p. 51. [Google Scholar]
- FLUKA User Manual, http://www.fluka.org/content/manuals/FM.pdf. [Google Scholar]
- M. Aguilar et al., The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II – results from the first seven years, Phys. Rep. 894, 1 (2021) [Google Scholar]
- M. Aguilar et al., Observation of new properties of secondary cosmic rays lithium, beryllium, and boron by the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 120, 021101 (2018) [NASA ADS] [CrossRef] [Google Scholar]
- M. Aguilar et al., First result from the Alpha Magnetic Spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV, Phys. Rev. Lett. 110 141102 (2013) [CrossRef] [Google Scholar]
- E.C. Stone, A.C Cummings, F.B McDonald, B.C Heikkila, N. Lal, W.R Webber, Voyager 1 observes low-energy galactic cosmic rays in a region depleted of Heliospheric ions, Science 341, 150 (2013) [NASA ADS] [CrossRef] [Google Scholar]
- W. Webber, A. Lukasiak, F. Mcdonald, Voyager measurements of the charge and isotopic composition of cosmic ray Li, Be, and B nuclei and implications for their production in the galaxy, ApJ 568, 210 (2002) [CrossRef] [Google Scholar]
- P.D. Serpico, Entering the cosmic ray precision era, J. Astrophys. Astron. 39, 41 (2018) [NASA ADS] [CrossRef] [Google Scholar]
- S. Gabici, C. Evoli, D. Gaggero, P. Lipari et al., The origin of Galactic cosmic rays: Challenges to the standard paradigm, Int. J. Mod. Phys. D 28, 1930022 (2019) [CrossRef] [Google Scholar]
- P. De La Torre Luque, M. Mazziotta, F. Loparco, F. Gargano, D. Serini, Implications of current nuclear cross sections on secondary cosmic rays with the upcoming DRAGON2 code, J. Cosmol. Astropart. Phys. 2021, 099 (2021) [CrossRef] [Google Scholar]
- P. De La Torre Luque, M. Mazziotta, F. Loparco, F. Gargano, D. Serini, “Markov chain Monte Carlo analyses of the flux ratios of B, Be and Li with the DRAGON2 code,” J. Cosmol. Astropart. Phys. 2021, 010 (2021) [CrossRef] [Google Scholar]
- Y. Génolini, D. Maurin, I.V. Moskalenko, M. Unger, Current status and desired precision of the isotopic production cross sections relevant to astrophysics of cosmic rays: Li, Be, B, C, and N, Phys. Rev. C 98, 034611 (2018) [CrossRef] [Google Scholar]
- N. Tomassetti, Examination of uncertainties in nuclear data for cosmic ray physics with the AMS experiment, Phys. Rev. C 92 (2015) [Google Scholar]
- G. Battistoni, The FLUKA code, galactic cosmic ray and solar energetic particle events: From fundamental physics to space radiation and commercial aircraft doses, in 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference and 16th International Workshop on Room-Temperature Semiconductor X-Ray and Gamma-Ray Detectors (2008), pp. 1609–1615 [Google Scholar]
- V. Andersen et al., The FLUKA code for space applications: recent developments, Adv. Space Res. 34, 1302 (2004) [CrossRef] [Google Scholar]
- J.H. Heinbockel et al., Comparison of the transport codes HZETRN, HETC and FLUKA for galactic cosmic rays, Adv. Space Res. 47, 1089 (2011) [CrossRef] [Google Scholar]
- D.S. Tusnski, S. Szpigel, C.G. Giménez de Castro, A.L. MacKinnon, P.J.A. Simões, Self-consistent Modeling of Gamma-ray spectra from Solar Flares with the Monte Carlo simulation Package FLUKA, Sol. Phys. 294, 103 (2019) [NASA ADS] [CrossRef] [Google Scholar]
- M. Ackermann et al., Measurement of the high-energy gamma-ray emission from the Moon with the Fermi Large Area Telescope, Phys. Rev. D 93, 082001 (2016) [CrossRef] [Google Scholar]
- S. De Gaetano, L. Di Venere, F. Gargano, F. Loparco et al., Constraints on the gamma-Ray emission from small solar system bodies with the Fermi large area telescope data, Astrophys. J. 951, 13 (2023) [CrossRef] [Google Scholar]
- P. De La Torre Luque, F. Loparco, M. Mazziotta, The FLUKA cross sections for cosmic-ray leptons and uncertainties on current positron predictions, J. Cosmol. Astropart. Phys. 2023, 011 (2023) [CrossRef] [Google Scholar]
- P. De La Torre Luque, Combined analyses of the antiproton production from cosmic-ray interactions and its possible dark matter origin, J. Cosmol. Astropart. Phys. 2021, 018 (2021) [CrossRef] [Google Scholar]
- P. De La Torre Luque, D. Gaggero, D. Grasso, A. Marinelli, Prospects for detection of a galactic diffuse neutrino flux, Front. Astron. Space Sci. 9, 1041838 (2022) [CrossRef] [Google Scholar]
- P. De La Torre Luque, D. Gaggero, D. Grasso, O. Fornieri et al., Galactic diffuse gamma rays meet the pev frontier, Astron. Astrophys. 672, A58 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
- SDUM options available with command SPECSOUR, http://www.fluka.org/content/manuals/online/16.7.html [Google Scholar]
- N. Mokhov, A.V. Ginneken, Neutrino radiation at muon colliders and storage rings, J. Nucl. Sci. Technol. 37, 172 (2000) [CrossRef] [Google Scholar]
- B.J. King, Neutrino radiation challenges and proposed solutions for many-tev muon colliders, in AIP Conference Proceedings (2000) [Google Scholar]
- R.B. Palmer, Muon colliders, Rev. Accel. Sci. Technol. 07, 137 (2014) [CrossRef] [Google Scholar]
- N. Bartosik, A. Bertolin, M. Casarsa, F. Collamati et al., Preliminary report on the study of beam-induced background effects at a muon collider, 2019 [Google Scholar]
- N. Mokhov, C. James, The MARS Code System User’s Guide Version15 (2016), Fermilab, Tech. Rep. fermilab-fn-1058-apc, 2017 [Google Scholar]
- F. Collamati, C. Curatolo, D. Lucchesi, A. Mereghetti et al., Advanced assessment of beam-induced background at a muon collider, J. Instrum. 16, P11009 (2021) [CrossRef] [Google Scholar]
- M. Pelliccioni, Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated Using the FLUKA code, Rad. Protect. Dosimet. 88, 279 (2000) [CrossRef] [Google Scholar]
- G. S. S. Roesler, deq99.f – a FLUKA user-routine converting fluence into effective dose and ambient dose equivalent, Tech. Rep. CERN-SC-2006-070-RP-TN, EDMS No. 809389, 2006 [Google Scholar]
- Z. Liu, A. Trudel, R. Augusto, K. Buckley, Shielding assessment of the IAMI facility, Rad. Phys. Chem. 177, 109154 (2020) [CrossRef] [Google Scholar]
- R. Augusto, A. Trudel, Z. Liu, M. Kinakin et al., An overview of the shielding optimization studies for the TRIUMF-ARIEL facility, Nucl. Instrum. Methods Phys. Res. Sect. A 1005, 165401 (2021) [CrossRef] [Google Scholar]
- A. Trudel, R. Augusto, Z. Liu, M. Kinakin et al., Design of a compact shielding envelope and elements of radiological protection at the TRIUMF-ARIEL facility, Rad. Phys. Chem. 170, 108640 (2020) [CrossRef] [Google Scholar]
- R. Augusto, A. Trudel, J. Mildenberger, K. Ardron et al., Impact study of beam losses in TRIUMF’s BL4N proton cave and ARIEL tunnel, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectr. Detect. Assoc. Equip. 1049, 168084 (2023) [CrossRef] [Google Scholar]
- R. Augusto, J. Smith, S. Varah, W. Paley et al., Design and radiological study of the 225Ac medical target at the TRIUMF-ARIEL proton-target station, Rad. Phys. Chem. 201, 110491 (2022) [CrossRef] [Google Scholar]
- K. Batkov, S. Ansell, Radiation safety analysis for the TDC line,” MAX IV Laboratory, Tech. Rep., 2023 [Google Scholar]
- Various authors, in 11th International Workshop on Radiation Safety at Synchrotron Radiation Sources, edited by P. Berkvens, M. Kiely Lemele et al. (2023) [Google Scholar]
- J. Tjelta, K. Ytre-Hauge, E. Lyngholm, A. Handeland, H. Henjum, C. Stokkevåg, Dose exposure to an adult present in the treatment room during pediatric pencil beam scanning proton therapy, Acta Oncol. 62, 1531 (2023) [CrossRef] [Google Scholar]
- A. Fassò, A. Ferrari, G. Smirnov, F. Sommerer, V. Vlachoudis, “FLUKA realistic modeling of radiation induced damage, Progr. Nucl. Sci. Technol. 2, 769 (2011) [CrossRef] [Google Scholar]
- R.P. Gardner, A. Sood, On the future of Monte Carlo simulation for nuclear logs, Appl. Rad. Isotopes 68, 932 (2010) [CrossRef] [Google Scholar]
- N. Velker, B. Banzarov, F. Inanc, A. Vinokurov, N. Simonov, Evaluating Geant4 platform for nuclear well-logging problems, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Material Atoms 297, 102 (2013) [CrossRef] [Google Scholar]
- Y. Ge, J. Liang, Q. Zhang, W. Tang, A. Munoz-Garcia, A comparison study of GEANT4 and MCNP6 on neutron-induced gamma simulation, Appl. Rad. Isotopes 190, 110514 (2022) [CrossRef] [Google Scholar]
- G. Varignier, V. Fondement, C. Carasco, J. Collot et al., Comparison between GEANT4 and MCNP for well logging applications, EPJ Web Conf. 288, 01002 (2023) [CrossRef] [EDP Sciences] [Google Scholar]
- G.L. Moake, “Characterizing natural gamma-Ray tools without the API calibration formation, Petrophys. – SPWLA J. Format. Evaluat. Reserv. Descrip. 58, 485 (2017) [Google Scholar]
- D. Heck, J. Knapp, J.N Capdevielle, G. Schatz, T. Thouw, CORSIKA: a Monte Carlo code to simulate extensive air showers, Forschungszentrum Karlsruhe Report FZKA 6019, 1998 [Google Scholar]
- J. Alameddine, J. Albrecht, J. Alvarez-Muniz, J. Ammerman-Yebra et al., The particle-shower simulation code CORSIKA 8, PoS ICRC2023 444, 310 (2023) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.