Issue |
EPJ Nuclear Sci. Technol.
Volume 8, 2022
Euratom Research and Training in 2022: challenges, achievements and future perspectives
|
|
---|---|---|
Article Number | 36 | |
Number of page(s) | 12 | |
Section | Part 1: Safety research and training of reactor systems | |
DOI | https://doi.org/10.1051/epjn/2022042 | |
Published online | 14 December 2022 |
- L. Malerba, P. Agostini, M. Bertolus, F. Delage, A. Gallais-During, Ch Grisolia, K. Liger, P.-F. Giroux, Advances on GenIV structural and fuel materials and cross-cutting activities between fission and fusion, EPJ Nuclear Sci. Technol. 6, 32 (2020) [CrossRef] [EDP Sciences] [Google Scholar]
- https://www.eera-jpnm.eu [Google Scholar]
- European Commission, National Energy and Climate Plans (NECPs), https://ec.europa.eu/energy/topics/energy-strategy/national-energy-climate-plans_en [Google Scholar]
- International Atomic Energy Agency, Country Nuclear Power Profiles, https://www.iaea.org/publications/13448/country-nuclear-power-profiles. [Google Scholar]
- World Nuclear Association, Country Profiles, https://world-nuclear.org/information-library/country-profiles.aspx. [Google Scholar]
- L. Malerba, Summary of national programmes on nuclear materials, ORIENT-NM Deliverable D1.3 (2021), http://www.eera-jpnm.eu/orient-nm/filesharer/documents/Deliverables_and_Milestones/Public%20deliverables [Google Scholar]
- L. Malerba, A. Al Mazouzi, M. Bertolus, M. Cologna, P. Efsing, A. Jianu, P. Kinnunen, K.-F. Nilsson, M. Rabung, M. Tarantino, Materials for sustainable nuclear energy: a European strategic research and innovation agenda for all reactor generations, Energies 15, 1845 (2022) [CrossRef] [Google Scholar]
- M. Angiolini, P. Agostini, S. Bassini, F. Fabbri, M. Tarantino, F. Di Fonzo, Challenges for coolants in fast neutron spectrum systems, in IAEA-TECDOC-1912, International Atomic Energy Agency TECDOC Series (2020), pp. 195–203, https://www.iaea.org/publications/13657/challenges-for-coolants-in-fast-neutron-spectrum-systems [Google Scholar]
- I. Proriolserre, I. Ponsot, J.-B. Vogt, Alumina-Forming Austenitic (AFA) steels and aluminium-based coatingon 15-15 Ti steel to limit mechanical damage in presence of liquid lead-bismuth eutectic and liquid lead, in MATEC Web of Conference (EDP Sciences, 2021), Vol. 349, p. 02007 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
- H. At Abderrahim, P. Baeten, D. de Bruyn, R. Fernandez, MYRRHA – a multi-purpose fast spectrum research reactor, Energy Convers. Manag. 63, 4 (2012) [CrossRef] [Google Scholar]
- M. Tarantino, M. Angiolini, S. Bassini, S. Cataldo, C. Ciantelli, C. Cristalli, A. Del Nevo, I. Di Piazza, D. Diamanti, M. Eboli, et al., Overview on lead-cooled fast reactor design and related technologies development in ENEA, Energies 14, 5157 (2021) [CrossRef] [Google Scholar]
- B. Kvizda, G. Mayer, P. Vácha, J. Malesa, A. Siwiec, A. Vasile, S. Bebjak, B. Hatala, ALLEGRO Gas-cooled Fast Reactor (GFR) demonstrator thermal hydraulic benchmark, Nucl. Eng. Des. 345, 47 (2019) [CrossRef] [Google Scholar]
- L. Rozumová, L. Košek, J. Vt, A. Hojná, P. Halodová, Comparison of corrosion behavior of the austenitic stainless steel 316 L in static and flowing liquid lead, ASME J. Nucl. Rad. Sci. 7, 021605 (2021) [CrossRef] [Google Scholar]
- S. Bassini, M. Angiolini, Assessment of liquid metal corrosion for candidate materials and welds of LFR reactor, GEMMA D4.2 Report, 2021 [Google Scholar]
- S. Gavrilov, Assessment of liquid metal corrosion for candidate materials and welds of MYRRHA primary circuit, GEMMA D4.1 Report, 2021 [Google Scholar]
- M. Angiolini, A. Antonelli, P. Agostini, S. Bassini, F. Fabbri, M. Falconieri, F. Mura, Oxidation of P91 steel in oxygen saturated lead, to be submitted to J. Nucl. Mater. (2022) [Google Scholar]
- K.-F. Nilsson, Effect of liquid lead on mechanical properties of austenitic steels, their welds and implications for design, GEMMA D4.7 Report, 2021 [Google Scholar]
- G. Cacciamani, A. Dinsdale, M. Palumbo, A. Pasturel, The FeeNi system: thermodynamic modelling assisted by atomistic calculations, Intermetallics 18, 1148 (2010) [CrossRef] [Google Scholar]
- K. Li, C.C. Fu, Ground-state properties and lattice-vibration effects of disordered Fe–Ni systems for phase stability predictions, Phys. Rev. Mater. 4, 023606 (2020) [CrossRef] [Google Scholar]
- www.eera-jpnm/inspyre [Google Scholar]
- M. Bertolus et al., Synthesis of the INSPYRE results on MOX fuel behaviour, INSPYRE Deliverable D7.6 (2022), http://www.eera-jpnm.eu/inspyre/filesharer/documents/Deliverables%20&%20Milestones/Public%20deliverables [Google Scholar]
- P. Fouquet-Métivier, Ph.D. thesis, Université Paris-Saclay, France, 2022 [Google Scholar]
- D. Bathellier, M. Lainet, M. Freyss, P. Olsson, E. Bourasseau, A new law of heat capacity for UO2, PuO2 and (U, Pu)O2 derived from molecular dynamics simulations and useable in fuel performance codes, J. Nucl. Mater. 549, 152877 (2021) [CrossRef] [Google Scholar]
- P. Chakraborty, C. Guéneau, A. Chartier, Modelling of plutonium diffusion in (U, Pu)O2±x mixed oxide, Solid State Ion 357, 115503 (2020) [CrossRef] [Google Scholar]
- M. Gérardin, E. Gilabert, D. Horlait, M.-F. Barthe, G. Carlot, Experimental study of the diffusion of Xe and Kr implanted at low concentrations in UO2 and determination of their trapping mechanisms, J. Nucl. Mater. 556, 153174 (2021) [CrossRef] [Google Scholar]
- H. Balboa Lopez, Ph.D. thesis, Université Paris-Saclay, France, 2018 [Google Scholar]
- P. Garcia, A. Miard, T. Helfer, J.-B. Parise, X. Iltis, G. Antou, The effect of oxygen partial pressure on dislocation creep in polycrystalline uranium dioxide, J. Eur. Ceram. Soc. 41, 2124 (2021) [CrossRef] [Google Scholar]
- J. Chen, J.-B. Parise, P. Garcia, A. Miard, P. Desgardin, P. Sigot, M.F. Barthe, Evolution of mechanical properties under ion irradiation, INSPYRE Deliverable D3.4 (2022), http://www.eera-jpnm.eu/inspyre/filesharer/documents/Deliverables%20&%20Milestones/Public%20deliverables [Google Scholar]
- A.L. Smith, E. Epifano, A. Quaini, C. Guéneau, M. Bertolus, K. Samuelsson, P. Olsson, Thermodynamic data of fission product phases for the JOG modelling, INSPYRE Deliverable D4.1 (2022), http://www.eera-jpnm.eu/inspyre/filesharer/documents/Deliverables%20&%20Milestones/Public%20deliverables [Google Scholar]
- A. Magni, L. Luzzi, D. Pizzocri, A. Schubert, P. Van Uffelen, A. Del Nevo, Modelling of thermal conductivity and melting behaviour of minor actinide-MOX fuels and assessment against experimental and molecular dynamics data, J. Nucl. Mater. 557, 153312 (2021) [CrossRef] [Google Scholar]
- D. Pizzocri, T. Barani, L. Cognini, L. Luzzi, A. Magni, A. Schubert, P. Van Uffelen, T. Wiss, Synthesis of the inert gas behaviour models developed in INSPYRE, INSPYRE Deliverable D6.4 (2020), http://www.eera-jpnm.eu/inspyre/filesharer/documents/Deliverables%20&%20Milestones/Public%20deliverables [Google Scholar]
- P. Van Uffelen, A. Schubert, L. Luzzi, T. Barani, A. Magni, D. Pizzocri, M. Lainet, V. Marelle, B. Michel, B. Boer, S. Lemehov, A. Del Nevo, Incorporation and verification of models and properties in fuel performance codes, INSPYRE Deliverable D7.2 (2020), http://www.eera-jpnm.eu/inspyre/filesharer/documents/Deliverables%20&%20Milestones/Public%20deliverables [Google Scholar]
- L. Luzzi, T. Barani, B. Boer, A. Del Nevo, M. Lainet, S. Lemehov, A. Magni, V. Marelle, B. Michel, D. Pizzocri, A. Schubert, P. Van Uffelen, M. Bertolus, Assessment of INSPYRE-extended fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment, submitted to Nucl. Eng. Technol. (2022), https://doi.org/10.1016/j.net.2022.10.038 [Google Scholar]
- B. Michel, M. Lainet, A. Magni, L. Luzzi, D. Pizzocri, Results of the applicative benchmark between TRANSURANUS and GERMINAL on the ASTRID case study, INSPYRE Deliverable D7.4 (2021) http://www.eera-jpnm.eu/inspyre/filesharer/documents/Deliverables%20&%20Milestones/Public%20deliverables [Google Scholar]
- A. Magni, M. Bertolus, M. Lainet, V. Marelle, B. Michel, A. Schubert, P. Van Uffelen, L. Luzzi, D. Pizzocri, B. Boer, S. Lemehov, A. Del Nevo, Del Nevo, Fuel performance simulations of ESNII prototypes: results on MYRRHA normal and transient conditions, INSPYRE Deliverable D7.5 (2022), http://www.eera-jpnm.eu/inspyre/filesharer/documents/Deliverables%20&%20Milestones/Public%20deliverables [Google Scholar]
- L. Malerba, et al., Multiscale modelling for fusion and fission materials: the M4F project, Nucl. Mater. Energy 29, 101051 (2021) [CrossRef] [Google Scholar]
- L. Malerba, M4F project – Final Report, Deliverable D8.6/D38, http://www.h2020-m4f.eu/filesharer/documents/Deliverables%20&%20Milestones/Deliverables/Public%20Deliverables [Google Scholar]
- International Atomic Energy Agency, Technical Meeting on Synergies between Nuclear Fusion Technology Developments and Advanced Nuclear Fission Technologies, 6–10 Jun 2022, Vienna, Austria (hybrid event), https://www.iaea.org/events/evt2103079 [Google Scholar]
- G. Bonny, A. Bakaev, D. Terentyev, Combined effect of carbon and chromium enrichment on 〈1 0 0〉 loop absorption in iron, Comput. Mater. Sci. 211, 111533 (2022) [CrossRef] [Google Scholar]
- N. Kvashin, A. Ostapovets, N. Anento, A. Serra, On the migration of {3 3 2} 〈1 1 0〉 tilt grain boundary in bcc metals and further nucleation of {1 1 2} twin, Comput. Mater. Sci. 196, 110509 (2021) [CrossRef] [Google Scholar]
- N. Kvashin, P.L. Garca-Müller, N. Anento, A. Serra, Atomic processes of shear-coupled migration in {1 1 2} twins and vicinal grain boundaries in bcc-Fe, Phys. Rev. Mater. 4, 73604 (2020) [CrossRef] [Google Scholar]
- L. Dupuy, C. Robertson, I. Simonovski, T. Yalçinkaya, Towards simulations of dislocation channeling using large-scale dislocation dynamics simulations, M4F Deliverable D4.4 (2021), http://www.h2020-m4f.eu/filesharer/documents/Deliverables%20&%20Milestones/Deliverables/Public%20Deliverables [Google Scholar]
- M. Sauzay, L. Dupuy, C. Robertson, I. Simonovski, T. Yalçinkaya, Continuum scale modelling of slip localization, M4F Deliverable D4.5 (2021), http://www.h2020-m4f.eu/filesharer/documents/Deliverables%20&%20Milestones/Deliverables/Public%20Deliverables [Google Scholar]
- D. Gonçalves, I. Simonovski, M. Sauzay, T. Yalçinkaya, Polycrystal mean-field and full-field homogenization predictions of tensile behaviour, M4F Deliverable D5.3 (2021), http://www.h2020-m4f.eu/filesharer/documents/Deliverables%20&%20Milestones/Deliverables/Public%20Deliverables [Google Scholar]
- R. Rajakrishnan, E. Gaganidze, J. Aktaa, Physically-based constitutive equations for describing deformation damage behaviour of F/M steels, M4F Deliverable D5.1 (2019), http://www.h2020-m4f.eu/filesharer/documents/Deliverables%20&%20Milestones/Deliverables/Public%20Deliverables [Google Scholar]
- R. Rajakrishnan, E. Gaganidze, J. Aktaa, imulation of post yield and post necking behavior by using the UMAT implementation of the developed-constitutive equations Impact of rational use of post yield post necking behavior of F/M steels on the development of the advanced design rules, M4F Deliverable D5.6 (2021), http://www.h2020-m4f.eu/filesharer/documents/Deliverables%20&%20Milestones/Deliverables/Public%20Deliverables [Google Scholar]
- R. Rajakrishnan, E. Gaganidze, D. Terentyev, J. Aktaa, Macro-scale modeling of finite strain viscoplasticity in irradiated F/M steels: a continuum thermodynamic framework, submitted to the J. Mech. Phys. Solids (2022) [Google Scholar]
- K. Vogel, P. Chekhonin, C. Kaden, M. Hernández-Mayoral, S. Akhmadaliev, F. Bergner, Depth distribution of irradiation-induced dislocation loops in an Fe–9Cr model alloy irradiated with Fe ions: the effect of ion energy, Nucl. Mater. Energy 27, 101007 (2021) [CrossRef] [Google Scholar]
- N. Castin, et al., The dominant mechanisms for the formation of solute-rich clusters in low-Cu steels under irradiation, Mater. Today Energy 17, 100472 (2020) [CrossRef] [Google Scholar]
- J.P. Balbuena, L. Malerba, N. Castin, G. Bonny, M.J. Caturla, An object kinetic Monte Carlo method to model precipitation and segregation in alloys under irradiation, J. Nucl. Mater. 557, 153236 (2021) [CrossRef] [Google Scholar]
- L. Malerba, et al., Physical mechanisms and parameters for models of microstructure evolution under irradiation in Fe alloys – Part I: pure Fe, Nucl. Mater. Energy 29, 101069 (2021) [CrossRef] [Google Scholar]
- P.-M. Gueye, Ph.D. thesis, Université de Rouen Normandie, 2022 [Google Scholar]
- L. Veleva, P. Hähner, A. Dubinko, T. Khvan, D. Terentyev, A. Ruiz-Moreno, Depth-sensing hardness measurements to probe hardening behaviour and dynamic strain ageing effects of iron during tensile pre-deformation, Nanomaterials 11, 71 (2021) [Google Scholar]
- A. Ruiz Moreno, P. Hähner, L. Kurpaska, J. Jagielski, P. Spatig, M. Trebala, S. Hannula, S. Merino, G. De Diego, H. Namburi, O. Libera, D. Terentyev, T. Khvan, C. Heintze, N. Jennett, Round Robin into best practices for the determination of indentation size effects, Nanomaterials 10, 130 (2020) [CrossRef] [Google Scholar]
- K. Vogel, C. Heintze, P. Chekhonin, S. Akhmadaliev, E. Altstadt, F. Bergner, Relationships between depth-resolved primary radiation damage, irradiation-induced nanostructure and nanoindentation response of ion-irradiated Fe–Cr and ODS Fe–Cr alloys, Nucl. Mater. Energy 24, 100759 (2020) [CrossRef] [Google Scholar]
- A. Ruiz-Moreno, P. Hähner, F. Fumagalli, V. Haiblikova, M. Conte, N. Randall, Stress-strain curves and derived mechanical parameters of P91 steel from spherical nanoindentation at a range of temperatures, Mater. Des. 194, 108950 (2020) [CrossRef] [Google Scholar]
- https://www.cencenelec.eu/media/CEN-CENELEC/News/Publications/2022/cen-cenelec_work_programme2022.pdf [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.