Issue |
EPJ Nuclear Sci. Technol.
Volume 8, 2022
Euratom Research and Training in 2022: challenges, achievements and future perspectives
|
|
---|---|---|
Article Number | 36 | |
Number of page(s) | 12 | |
Section | Part 1: Safety research and training of reactor systems | |
DOI | https://doi.org/10.1051/epjn/2022042 | |
Published online | 14 December 2022 |
https://doi.org/10.1051/epjn/2022042
Review Article
Towards a single European strategic research and innovation agenda on materials for all reactor generations through dedicated projects
1
CIEMAT, Division MXE, Avda. Complutense, 40, 28040 Madrid, Spain
2
ENEA-FSN-ING Division, C.R. Brasimone, 40032 Camugnano, Italy
3
CEA, DEs, IRESNE, DEC/SESC, 13108 Saint-Paul Paul-Lez-Durance, France
* e-mail: marjorie.bertolus@cea.fr
Received:
21
September
2022
Received in final form:
2
August
2022
Accepted:
21
October
2022
Published online: 14 December 2022
The goal of the ORIENT-NM action is to produce a single European strategic vision on research and innovation concerning nuclear materials in the EU, serving all reactor generations and nuclear systems. The key in this endeavour is to focus on advanced materials science practices that, combined with digital techniques, will enable acceleration in materials development, manufacturing, supply, qualification, and monitoring, in support of nuclear energy safety, efficiency, economy and sustainability. The research agenda will be rooted in existing virtuous examples of nuclear materials science projects. Here the results of three of them are summarised, thereby covering different reactor applications and families of materials, as well as a range of advanced material research approaches. GEMMA addressed a number of key areas concerning the development and qualification of metallic structural materials for GenIV reactor conditions, focusing on austenitic steels and their compatibility with several non-aqueous coolants, their welds and the modelling of their stability under irradiation. INSPYRE was an integrated project applying a basic science approach to (U,Pu)O2 fuels, to develop physics-based models for the behaviour of nuclear fuels under irradiation and improve fuel performance codes. Modelling was also the focus of the M4F project, which brought together the fission and fusion materials communities to study the effects of localised deformation under irradiation in ferritic/martensitic steels and to develop good practices to use ion irradiation as a tool to evaluate radiation effects on materials.
© L. Malerba et al., Published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.