Issue
EPJ Nuclear Sci. Technol.
Volume 8, 2022
Euratom Research and Training in 2022: the Awards collection
Article Number 34
Number of page(s) 13
Section Part 1: Safety research and training of reactor systems
DOI https://doi.org/10.1051/epjn/2022039
Published online 25 November 2022
  1. J. Venker, Development and Validation of Models for Simulation of Supercritical Carbon Dioxide Brayton Cycles and Application to Self-Propelling Heat Removal Systems in Boiling Water Reactors (Stuttgart, 2015), https://doi.org/10.18419/opus-2364 [Google Scholar]
  2. F.K. Benra, D. Brillert, O. Frybort, P. Hajer, M. Rohde, S. Schuster, et al., A supercritical CO2 low temperature Brayton-cycle for residual heat removal, in 5th Int. Symp. CO2 Power Cycles (2016), pp. 1–5 [Google Scholar]
  3. M.T. White, G. Bianchi, L. Chai, S.A. Tassou, A.I. Sayma, Review of supercritical CO2 technologies and systems for power generation, Appl. Therm. Eng. 185, 116447 (2021) [CrossRef] [Google Scholar]
  4. P. Wu, Y. Ma, C. Gao, W. Liu, J. Shan, Y. Huang, et al., A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications, Nucl. Eng. Des. 368, 110767 (2020) [CrossRef] [Google Scholar]
  5. F. D’Auria, Thermal-hydraulics of Water Cooled Nuclear Reactors (Elsevier, 2017) [Google Scholar]
  6. D. Bestion, in System Code Models and Capabilities (THICKET, Grenoble, 2008), pp. 81–106 [Google Scholar]
  7. P. Wu, C. Gao, J. Shan, Development and verification of a transient analysis tool for reactor system using supercritical CO2 Brayton cycle as power conversion system, Sci. Technol. Nucl. Install. 2018, 1 (2018) [CrossRef] [Google Scholar]
  8. H. Wang, L. Sun, H. Wang, L. Shi, Z. Zhang, Dynamic analysis of sCO2 cycle control with coupled PDC-SAS4A/SASSYS-1 codes, Int. Conf. Nucl. Eng. Proc. ICONE 2, 633 (2013) [Google Scholar]
  9. G. Mauger, N. Tauveron, F. Bentivoglio, A. Ruby, On the dynamic modeling of Brayton cycle power conversion systems with the CATHARE-3 code, Energy 168, 1002 (2019) [CrossRef] [Google Scholar]
  10. L. Batet, J.M. Alvarez-Fernandez, E. Mas de les Valls, V. Martinez-Quiroga, M. Perez, F. Reventos, et al., Modelling of a supercritical CO2 power cycle for nuclear fusion reactors using RELAP5–3D, Fusion Eng. Des. 89, 354 (2014) [CrossRef] [Google Scholar]
  11. M. Hexemer, Supercritical CO2 Brayton cycle Integrated System Test (IST) TRACE model and control system design, in Supercrit CO2 Power Cycle Symp. (2011), pp. 1–58. [Google Scholar]
  12. M. Hofer, M. Buck, J. Starflinger, ATHLET extensions for the simulation of supercritical carbon dioxide driven power cycles, Kerntechnik 84, 390 (2019) [CrossRef] [Google Scholar]
  13. M. Hofer, M. Buck, A. Cagnac, T. Prusek, N. Sobecki, P. Vlcek, et al., Deliverable 1.2: Report on the validation status of codes and models for simulation of sCO2-HeRo loop. sCO2-4-NPP (2020) [Google Scholar]
  14. M. Hofer, K. Theologou, J. Starflinger, Qualifizierung von Analysewerkzeugen zur Bewertung nachwärmegetriebener, autarker Systeme zur Nachwärmeabfuhr – sCO2-QA – Abschlussbericht (Förderkennzeichen: 1501494), (Stuttgart, 2021) [Google Scholar]
  15. H. Austregesilo, C. Bals, A. Hora, G. Lerchl, P. Romstedt, P. Schöffel, et al., ATHLET Models and Methods (Garching, 2016), Vol. 4 [Google Scholar]
  16. Gesellschaft für Anlagen- und Reaktorsicherheit gGmbH. ATHLET 2019, https://user-codes.grs.de/athlet (accessed August 19, 2019) [Google Scholar]
  17. M. Hofer, H. Ren, F. Hecker, M. Buck, D. Brillert, J. Starflinger, Simulation, analysis and control of a self-propelling heat removal system using supercritical CO2 under varying boundary conditions, Energy 247,123500 (2022) [CrossRef] [Google Scholar]
  18. P. Hajek, A. Vojacek, V. Hakl, Supercritical CO2 heat removal system – integration into the European PWR fleet, in 2nd Eur. sCO2 Conf., (Essen, 2018) [Google Scholar]
  19. A. Vojacek, V. Hakl, P. Hajek, J. Havlin, H. Zdenek, Deliverable 1.3: Documentation system integration into European PWR fleet. sCO2-HeRo (2016) [Google Scholar]
  20. H.S. Pham, N. Alpy, J.H. Ferrasse, O. Boutin, M. Tothill, J. Quenaut, et al., An approach for establishing the performance maps of the sc-CO2 compressor: Development and qualification by means of CFD simulations, Int. J. Heat Fluid Flow 61, 379 (2016) [CrossRef] [Google Scholar]
  21. M. Hofer, M. Buck, J. Starflinger, Operational analysis of a self-propelling heat removal system using supercritical CO2 with ATHLET, in 4th Eur. sCO2 Conf. (2021), pp. 1–11. [Google Scholar]
  22. M. Hofer, H. Ren, F. Hecker, M. Buck, D. Brillert, J. Starflinger, Simulation and analysis of a self-propelling heat removal system using supercritical CO2 at different ambient temperatures, in 4th Eur. sCO2 Conf. (2021), pp. 1–14. [Google Scholar]
  23. O. Frýbort, D. Kriz, T. Melichar, P. Vlcek, V. Hakl, L. Vyskocil, et al., Deliverable 5.4: Thermodynamic performance of the heat recovery system integrated into the plant. sCO2-4-NPP (2022) [Google Scholar]
  24. M. Hofer, M. Buck, T. Prusek, N. Sobecki, P. Vlcek, D. Kriz, et al., Deliverable 2.2: Analysis of the performance of the sCO2-4-NPP system under accident scenarios based on scaled-up components data. sCO2-4-NPP (2021) [Google Scholar]
  25. M.J. Hexemer, H.T. Hoang, K.D. Rahner, B.W. Siebert, G.D. Wahl, Integrated Systems Test (IST) brayton loop transient model description and initial results, in sCO2 Power Cycle Symp. (Troy, 2009), pp. 1–172. [Google Scholar]
  26. N. Carstens, Control Strategies for Supercritical Carbon Dioxide Power Conversion Systems (Massachusetts Inst Technol., 2007) [Google Scholar]
  27. E. Liese, J. Albright, S.A. Zitney, Startup, shutdown, and load-following simulations of a 10 MWe supercritical CO2 recompression closed Brayton cycle, Appl. Energy 277, 115628 (2020) [CrossRef] [Google Scholar]
  28. A. Moisseytsev, J.J. Sienicki, Simulation of sCO2 integrated system test with ANL plant dynamics code, in 5th Int. Symp. CO2 Power Cycles (San Antonio, 2016) [Google Scholar]
  29. A. Moisseytsev, J.J. Sienicki, Analysis of thermal transients for sCO2 Brayton cycle heat exchangers, Proc. ASME Turbo Expo 9, 1 (2019) [Google Scholar]
  30. H. Ren, A. Hacks, S. Schuster, D. Brillert, Mean-line analysis for supercritical CO2 centrifugal compressors by using enthalpy loss coefficients, in 4th Eur. Supercrit. CO2 Conf. (2021) [Google Scholar]
  31. S. Schuster, C.N. Markides, A.J. White, Design and off-design optimisation of an organic Rankine cycle (ORC) system with an integrated radial turbine model, Appl. Therm. Eng. 174, 115192 (2020) [CrossRef] [Google Scholar]
  32. M. Hofer, M. Buck, M. Strätz, J. Starflinger, Investigation of a correlation based model for sCO2 compact heat exchangers, in 3rd Eur. Supercrit. CO2 Conf. (Paris, 2019), pp. 1–9, https://doi.org/10.17185/duepublico/48874 [Google Scholar]
  33. M. Jobst, S. Kliem, Y. Kozmenkov, P. Wilhelm, Verbundprojekt WASA-BOSS: Weiterentwicklung und Anwendung von Severe Accident Codes – Bewertung und Optimierung von Störfallmaßnahmen; Teilprojekt B: Druckwasserreaktor-Störfallanalysen unter Verwendung des Severe-Accident Code ATHLET-CD (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.